Advertisement

New insights into eruption source parameters of the 1600 CE Huaynaputina Plinian eruption, Peru

Abstract

In the Central Andes, large Plinian eruptions (Volcanic Explosivity Index ≥ 5) occur at a relatively high frequency, i.e. average one every 2000 to 4000 years over the past 50,000 years in Peru. Such recurring explosive activity represents a significant challenge for regions typically hosting several million people (e.g. Southern Peru, Western Bolivia and Northern Chile). With VEI 6, the 1600 CE Huaynaputina eruption is considered the largest historical eruption in South America. We have re-examined the first Plinian phase of this eruption in order to better assess critical eruption source parameters (i.e. erupted volume, plume height, mass eruption rate, eruption duration).The revised bulk volume of the tephra-fall deposit associated with the Plinian phase is approximately 13–14 km3, almost twice the previous estimate (7–8 km3 within the 1 cm isopach) based on methods including power law, Weibull function and Bayesian linear regression. Tephra was dispersed by strong winds to the WNW as far as 400 km on Peruvian territory and then in the Pacific Ocean. Seven villages were buried, killing ~ 1500 people. The revised plume height estimate, 32.2 ± 2.5 km, is consistent with the early estimations. As a result, the Huaynaputina 1600 CE first eruption phase lies in the upper part of the Plinian field close to the ultra-Plinian transition, making this event one of the largest in the past millennium which coincides with results from recent studies on palaeoclimatic impacts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adams N, de Silva S, Self S, Salas G, Schubring S, Permenter J, Arbesman K (2001) The physical volcanology of the 1600 eruption of Huaynaputina, Southern Peru. Bull Volcanol 62:493–518. https://doi.org/10.1007/s004450000105

  2. Biass S, Bagheri G, Aeberhard W, Bonadonna C (2014) TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits. Stat Volcanol 1:1–27. https://doi.org/10.5038/2163-338X.1.2

  3. Biass S, Bagheri G, Bonadonna C (2015) A MATLAB implementation of the Carey and Sparks (1986) model. URL https://vhub.org/resources/3922

  4. Biass S, Bonadonna C, Connor L, Connor C (2016) TephraProb: a MATLAB package for probabilistic hazard assessments of tephra fallout. J Appl Volcanol 5:1–16. https://doi.org/10.1186/s13617-016-0050-5

  5. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. https://doi.org/10.1130/G32769.1

  6. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742. https://doi.org/10.1007/s00445-013-0742-1

  7. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. https://doi.org/10.1007/s00445-004-0386-2

  8. Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:2340–2368

  9. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187. https://doi.org/10.1016/S0377-0273(98)00007-9

  10. Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI Commission on Tephra Hazard Modelling. Bull Volcanol 75: 680. https://doi.org/10.1007/s00445-012-0680-3

  11. Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100. https://doi.org/10.1016/j.jvolgeores.2015.03.009

  12. Bonadonna C, Cioni R, Costa A, Druitt T, Phillips J, Pioli L, Andronico D, Harris A, Scollo S, Bachmann O, Bagheri G, Biass S, Brogi F, Cashman K, Dominguez L, Dürig T, Galland O, Giordano G, Gudmundsson M, Hort M, Höskuldsson A, Houghton B, Komorowski JC, Küppers U, Lacanna G, le Pennec JL, Macedonio G, Manga M, Manzella I, Vitturi M’M, Neri A, Pistolesi M, Polacci M, Ripepe M, Rossi E, Scheu B, Sulpizio R, Tripoli B, Valade S, Valentine G, Vidal C, Wallenstein N (2016) MeMoVolc report on classification and dynamics of volcanic explosive eruptions. Bull Volcanol 78:84–12. https://doi.org/10.1007/s00445-016-1071-y

  13. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455. https://doi.org/10.1038/30943

  14. Burden RE, Phillips JC, Hincks TK (2011) Estimating volcanic plume heights from depositional clast size. J Geophys Res 116:B11206. https://doi.org/10.1029/2011JB008548

  15. Burden RE, Chen L, Phillips JC (2013) A statistical method for determining the volume of volcanic fall deposits. Bull Volcanol 75:707. https://doi.org/10.1007/s00445-013-0707-4

  16. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125. https://doi.org/10.1007/BF01046546

  17. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Chapman & Hall, London

  18. Cioni R, Pistolesi M, Rosi M (2015) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, 2nd edn. Academic Press, London, pp 520–535

  19. Cobeñas G, Thouret J-C, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120. https://doi.org/10.1016/j.jvolgeores.2012.06.006

  20. Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett 39:L16308. https://doi.org/10.1029/2012GL052566

  21. Engwell SL, Aspinall WP, Sparks RSJ (2015) An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties. Bull Volcanol 77:61. https://doi.org/10.1007/s00445-015-0942-y

  22. Fagents SA, Gregg TKP, Lopes RMC (eds) (2013) Modelling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press

  23. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167. https://doi.org/10.1007/BF00278005

  24. Jenkins SF, Wilson T, Magill C, Miller V, Stewart C, Blong R, Marzocchi W, Boulton M, Bonadonna C, Costa A (2015) Volcanic ash fall hazard and risk. In: Sparks S, Brown SK, Jenkins SF, Vye-Brown C (eds) Loughlin SC. Cambridge University Press, Global Volcanic Hazard and Risk, pp 173–222

  25. Juvigné E, Thouret J-C, Gilot E, Gourgaud A, Graf K, Leclercq L, Legros F, Uribe M (1997) Etude téphrostratigraphique et bio-climatique du Tardiglaciaire et de l’Holocène de la Laguna Salinas, Pérou méridional. Géogr Phys Quat 51:221–233. https://doi.org/10.7202/033120ar

  26. Juvigné E, Thouret J-C, Loutsch I, Lamadon S, Frechen M, Fontugne M, Rivera M, Dávila J, Mariño J (2008) Retombées volcaniques dans des tourbières et lacs autour du massif des Nevados Ampato et Sabancaya (Pérou méridional, Andes Centrales). Quaternaire 19(2):157–173. https://doi.org/10.4000/quaternaire.3362

  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  28. Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. Bull Volcanol 76:793–796. https://doi.org/10.1007/s00445-013-0793-3

  29. Lavallée Y, de Silva SL, Salas G, Byrnes JM (2006) Explosive volcanism (VEI 6) without caldera formation: insight from Huaynaputina volcano, southern Peru. Bull Volcanol 68:333–348. https://doi.org/10.1007/s00445-005-0010-0

  30. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21. https://doi.org/10.1016/j.jvolgeores.2009.01.008

  31. Mix AC, Tiedemann R, Blum P (2003) Proc ODP Init Repts:202. https://doi.org/10.2973/odp.proc.ir.202.108.2003

  32. Navarro Oviedo R (1994) Antología del valle de Omate. Universidad National San Augustín, Arequipa

  33. Navarro Oviedo R, Jara LA, Thouret J-C, Siebe C, Dávila J (2000) The AD 1600 eruption of Huaynaputina as described in early Spanish chronicles. Bol Soc Geol Perú 90:121–132

  34. Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca-South America and Nazca-Pacific plate motions. Geophys Res Lett 26:3405–3408. https://doi.org/10.1029/1999GL005394

  35. Oppenheimer C (2011) Eruptions that shook the world. Cambridge Univertsity Press

  36. Osman S, Rossi E, Bonadonna C, Frischknecht C, Andronico D, Cioni R, Scollo S (2019) Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-2018-91

  37. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15. https://doi.org/10.1007/BF01086757

  38. Rivera M, Martin H, Le Pennec J-L, Thouret J-C, Gourgaud A, Gerbe MC (2017) Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru). Lithos 268:240–259. https://doi.org/10.1016/j.lithos.2016.11.009

  39. Rossi E, Bonadonna C, Degruyter W (2019) A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions. Earth Planet Sci Lett 505:1–12. https://doi.org/10.1016/j.epsl.2018.10.007

  40. Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano (Peru). Bull Volcanol 76:771–796. https://doi.org/10.1007/s00445-013-0771-9

  41. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, Berkeley

  42. Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) (2015) The encyclopedia of volcanoes, 2nd edn. London, Academic Press

  43. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15. https://doi.org/10.1007/BF01073509

  44. Stoffel M, Khodri M, Corona C, Guillet S, Poulain V, Bekki S, Guiot J, Luckman BH, Oppenheimer C, Lebas N, Beniston M, Masson-Delmotte V (2015) Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat Geosci 8:784–788. https://doi.org/10.1038/ngeo2526

  45. Suzuki T, Katsui Y, Nakamura T (1973) Size distribution of the Tarumai Ta-Tb pumice fall deposit. Bull Volcanol Soc Japan 18:47–63

  46. Thorarinsson S (1954) The eruption of Hekla, 1947-1948. Visindafelag Islendinga, Reykjavik

  47. Thorpe RS (1984) The tectonic setting of active Andean volcanism. In: Harmon RS, Barreiro BA (eds) Andean Magmatism. Birkhäuser, Boston, pp 4–8

  48. Thouret J-C, Davila J, Eissen J-P (1999) Largest explosive eruption in historical times in the Andes at Huaynaputina volcano, A.D. 1600, Southern Peru. Geology 27:435–438. https://doi.org/10.1130/0091-7613(1999)027<0435:LEEIHT>2.3.CO;2

  49. Thouret J-C, Finizola A, Fornari M, Suni J, Legeley-Padovani A, Frechen M (2001) Geology of El Misti volcano nearby the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610. https://doi.org/10.1130/0016-7606(2001)113<1593:GOEMVN>2.0.CO;2

  50. Thouret J-C, Juvigné E, Gourgaud A, Boivin P, Davila J (2002a) Reconstruction of the AD 1600 Huaynaputina eruption based on the correlation of geologic evidence with early Spanish chronicles. J Volcanol Geotherm Res 115:529–570. https://doi.org/10.1016/S0377-0273(01)00323-7

  51. Thouret J-C, Juvigné E, Marino J, Moscol M, Loutsch I, Davila J, Legeley-Padovani A, Lamadon S, Rivera M (2002b) Late Pleistocene and Holocene tephro-stratigraphy and chronology in Southern Peru. Boletín Sociedad geológica del Perú 93:45–61

  52. Thouret J-C, Rivera M, Wörner G, Gerbe M-C, Finizola A, Fornari M, Gonzales K (2005) Ubinas: the evolution of the historically most active volcano in southern Peru. Bull Volcanol 67:557–589. https://doi.org/10.1007/s00445-004-0396-0

  53. Verosub KL, Lippman J (2008) Global impacts of the 1600 eruption of Peru’s Huaynaputina volcano. Eos Trans AGU 89:141–142. https://doi.org/10.1029/2008EO150001

  54. Walker GPL (1973) Explosive volcanic eruptions — a new classification scheme. Geologische Rundschau 62:431–446. https://doi.org/10.1007/BF01840108

  55. Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94. https://doi.org/10.1016/0377-0273(80)90008-6

  56. Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Unwin Hyman, London

  57. Wilson L, Walker GPL (1987) Explosive volcanic eruptions - VI. ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J Int 89:657–679. https://doi.org/10.1111/j.1365-246X.1987.tb05186.x

  58. Yang Q, Bursik M (2016) A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits. Bull Volcanol 78:68–21. https://doi.org/10.1007/s00445-016-1061-0

Download references

Acknowledgments

The authors thank Sébastien Biass for his help with TError and Qingyuan Yang for pointing out some errors in an early version of the data set. Associate Editor Marcus I Bursik, Stephen C Kuehn and an anonymous reviewer are thanked for their thorough reviews of the manuscript. This is Laboratory of Excellence ClerVolc contribution n°377.

Funding information

Field work was funded by a Institut de Recherche pour le Développement – Laboratoire Magmas et Volcans programme on recent and active volcanism in south Peru, through cooperation between the Instituto Geológico, Minero y Metalúrgico (Peru) and study abroad office at Université Clermont Auvergne (France) and through the Huayruro project funded by the Fondo National de Desarrollo Científico y Tecnológico. A trip to Université de Genève to work with Costanza Bonadonna was funded by the Observatoire de Physique du Globe de Clermont-Ferrand. Costanza Bonadonna was funded by the Swiss National Science Foundation (#200021_163152).

Author information

Correspondence to J.-M. Prival.

Additional information

Editorial responsibility: M.I. Bursik; Deputy Executive Editor: J. Tadeucci

Electronic supplementary material

ESM 1

(XLSX 32 kb)

ESM 2

(XLSX 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prival, J., Thouret, J., Japura, S. et al. New insights into eruption source parameters of the 1600 CE Huaynaputina Plinian eruption, Peru. Bull Volcanol 82, 7 (2020) doi:10.1007/s00445-019-1340-7

Download citation

Keywords

  • Tephra-fall deposit
  • Plume height
  • Erupted volume
  • Mass Eruption Rate