Advertisement

Bulletin of Volcanology

, 81:67 | Cite as

Time-dependent Sr and Nd isotope variations during the evolution of the ultrapotassic Sabatini Volcanic District (Roman province, Central Italy)

  • Gianluca SottiliEmail author
  • Ilenia Arienzo
  • Francesca Castorina
  • Mario Gaeta
  • Biagio Giaccio
  • Fabrizio Marra
  • Danilo M. Palladino
Research Article
  • 45 Downloads

Abstract

The Sabatini Volcanic District (SVD), active between 0.8 and 0.07 Ma, is a volcanic field in the Roman province (Central Italy) located along the Tyrrhenian margin of the Italian peninsula. In this volcanic region, high-K magmas originated from a metasomatised phlogopite-bearing peridotite mantle recording subduction-related fluids and/or melting processes. Here, we investigate magma evolution during the six main eruptive phases of the SVD by means of chemical and isotopic (Sr and Nd) analyses. Specifically, we analyzed clinopyroxene crystals from juvenile pumice and scoria clasts and lavas, from 40 major SVD eruptive units chronologically well constrained by 40Ar/39Ar dating. 87Sr/86Sr and 144Nd/143Nd ratios in SVD clinopyroxene range 0.7095–0.7115 and 0.51210-0.51214, respectively. The mean Sr and Nd isotope compositions of each eruptive phases show a gradual, long-term decrease over the entire SVD eruptive history. However, when considering the distinct temporal windows of the individual eruptive phases, a significant variability of the Sr-Nd isotope ratios emerges, thus highlighting a more complex, time-dependent geochemical trend for the erupted magmas, with respect to a previously described trend at the nearby Colli Albani Volcanic District (0.6–0.04 Ma). Geochemical features of clinopyroxene in lavas and juvenile pyroclasts suggest that magma differentiation occurred in an open system due to assimilation of siliciclastic sedimentary rocks. Moreover, a critical review of the available geochemical data, in light of 40Ar/39Ar ages, allows the recognition of the SVD as the source of widespread tephra markers recorded in the central Mediterranean area by previous works.

Keywords

Sabatini Volcanic District Roman province Sr and Nd isotopes 

Notes

Acknowledgments

We thank Andrea Marzoli and an anonymous reviewer for the helpful comments and the Associate Editor, Steve Self, and the Executive Editor, Andrew Harris, for the additional precious suggestions. The authors kindly thank Sonia Tonarini for her assistance in the Mass Spectrometry Laboratory of the Istituto Geoscienze e Georisorse-CNR, Pisa, Italy.

Funding information

This research was partly funded by the project “Microtextural, petrological and geochemical analyses on pyroclastic products from the volcanic districts of the Colli Albani and the Sabatini Volcanic District aimed at developing predictive models of volcanic hazard” (responsible Gianluca Sottili), funded by Sapienza-Università di Roma (Year 2017).

Supplementary material

445_2019_1324_MOESM1_ESM.doc (105 kb)
ESM 1 (DOC 105 kb)
445_2019_1324_MOESM2_ESM.xls (60 kb)
ESM 2 (XLS 60 kb)
445_2019_1324_MOESM3_ESM.doc (72 kb)
ESM 3 (DOC 72 kb)

References

  1. Aureli, D., Contardi, A., Giaccio, B., Jicha, B., Lemorini, C., Madonna, S., Magri, D., Marano, F., Milli, S., Modesti, V., Palombo, M.R., Rocca, R. 2015. Palaeoloxodon and human interaction: depositional setting, chronology and archaeology at the Middle Pleistocene Ficoncella site (Tarquinia, Italy) PLoS One, 10 (4), art. no. e0124498Google Scholar
  2. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: the role of carbonated pelitic vs. pelitic sediment recycling at destructive plate margin. Lithos 113:213–227CrossRefGoogle Scholar
  3. Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descr Carta Geol It 49:77–134Google Scholar
  4. Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos 26:191–221CrossRefGoogle Scholar
  5. Brauer A, Wulf S, Mangili C, Moscariello A (2007) Tephrochronological dating of varved interglacial lake deposits from Piànico-Sèllere (Southern Alps, Italy) to around 400 ka. J Quat Sci 22:85–96CrossRefGoogle Scholar
  6. Bell K, Lavecchia G, Rosatelli G (2013) Cenozoic Italian magmatism: isotope constraints for possible plume-related activity. J S Am Earth Sci 41:22–40CrossRefGoogle Scholar
  7. Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, De Benedetti A, Morra V, Conticelli S (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucitebearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull Volcanol 71:977–1005CrossRefGoogle Scholar
  8. Buttinelli M, de Rita D, Cremisini C, Cimarelli C (2011) Deep explosive focal depths during maar forming magmatic-hydrothermal eruption: Baccano crater, Central Italy. Bull Volcanol 73(7):899–915CrossRefGoogle Scholar
  9. Castorina F, Stoppa F, Cundari A, Barbieri M (2000) An enriched mantle source for Italy’s melilitite-carbonatite association as inferred by its Nd-Sr isotope signature. Mineral Mag 64:625–639CrossRefGoogle Scholar
  10. Cioni R, Laurenzi MA, Sbrana A, Villa IM (1993) 40Ar/39Ar chronostratigraphy of the initial activity in the Sabatini volcanic complex (Italy). Boll Soc Geol It 112:251–263Google Scholar
  11. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in Central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240CrossRefGoogle Scholar
  12. Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini volcanic district, Central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136CrossRefGoogle Scholar
  13. Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman province and southern Tuscany. Mineral Petrol 74:189–222CrossRefGoogle Scholar
  14. Conticelli S, Avanzinelli R, Ammannati E, Casalini M (2015) The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos 232:293–299CrossRefGoogle Scholar
  15. Conticelli S, Laurenzi MA, Giordano G, Mattei M, Avanzinelli R, Melluso L, Tommasini S, Boari E, Cifelli F, Perini G (2010) Leucite-bearing (kamafugitic/leucititic) and -free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: constraints on petrogenesis and geodynamics. In: Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds.), Journal of the Virtual Explorer, volume 36, paper 20,  https://doi.org/10.3809/jvirtex.2009.00251
  16. Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R (2009) Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on the Roccamonfina volcanic rocks. Roman Magmatic Province, Southern Italy Contributions to Mineralogy and Petrology, 157, pp. 41–63Google Scholar
  17. Cross JK, Tomlinson EL, Giordano G, Smith VC, De Benedetti AA, Roberge J, Manning CJ, Wulf S, Menzies MA (2014) High level triggers for explosive mafic volcanism: Albano Maar, Italy. Lithos 190–191:137–153CrossRefGoogle Scholar
  18. D'Antonio M, Mariconte R, Arienzo I, Mazzeo FC, Carandente A, Perugini D, Petrelli M, Corselli C, Orsi G, Principato MS, Civetta L (2016) Combined Sr-Nd isotopic and geochemical fingerprinting as a tool for identifying tephra layers: application to deep-sea cores from eastern Mediterranean Sea. Chem Geol 443:121–136CrossRefGoogle Scholar
  19. Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magma. Contrib Mineral Petrol 148:247–263CrossRefGoogle Scholar
  20. de Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Volcanic units. In: Di Filippo M (ed) Sabatini volcanic complex: quad, Ric. Sci, vol 114. Roma, Progetto Finalizzato Geodinamica C.N.R, pp 33–79Google Scholar
  21. de Rita D, Di Filippo M, Rosa C (1996) Structural evolution of the Bracciano volcanotectonic depression, Sabatini Volcanic District, Italy. In: McGuire, W.J., Jones, A.P., Neuberg, J. (Eds.), Volcano instability on the Earth and other planets: Geol. Soc. London Spec. Publ., Vol. 110, 225–236Google Scholar
  22. Di Rita F, Sottili G (2019) Pollen analysis and tephrochronology of a MIS 13 lacustrine succession from eastern Sabatini Volcanic District (Rignano Flaminio, Central Italy). Quat Sci Rev 204:78–93.  https://doi.org/10.1016/j.quascirev.2018.11.027 CrossRefGoogle Scholar
  23. Del Bello E, Mollo S, Scarlato P, von Quadt A, Forni F, Bachmann O (2014) New petrological constraints on the last eruptive phase of the Sabatini Volcanic District (Central Italy): clues from mineralogy, geochemistry, and Sr-Nd isotopes. Lithos 205:28–38CrossRefGoogle Scholar
  24. Di Rocco T, Freda C, Gaeta M, Mollo S, Dallai L (2012) Magma chambers emplaced in carbonate substrate: petrogenesis of skarn and cumulate rocks and implication on CO2-degassing in volcanic areas. J Petrol 53:2307–2332CrossRefGoogle Scholar
  25. Facchinelli V, Gaeta M (1992) Petrogenetic implications from birefringent garnets in the sialic ejecta in the alkaline-potassic volcanics of Sabatini Mts. (Latium, Italy). [Indicazioni petrogenetiche dai granati birifrangenti dei proietti sialici nelle vulcaniti alcalino potassiche dei Monti Sabatini (Lazio)] Rendiconti Lincei 3(4):295–310Google Scholar
  26. Florindo F, Karner DB, Marra F, Renne PR, Roberts AP, Weaver R (2007) Radioisotopic age constraints for glacial terminations IX and VII from aggradational sections of the Tiber River delta in Rome. Italy Earth Planet Sci Lett 256:61–80CrossRefGoogle Scholar
  27. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni eruption (Alban Hills, Central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120CrossRefGoogle Scholar
  28. Gaeta M, Freda C (2001) Strontian fluoro-magnesiohastingsite in Alban Hills lavas (Central Italy): crystallization conditions. Mineralogical Magazine 65:787–795CrossRefGoogle Scholar
  29. Gaeta M, Palladino DM, Karner DB, Renne PR (2003) Vulcanoclastiti della Valle del Corno (vvc). Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000-foglio 358 Pescorocchiano. Regione Lazio, pp. 34–35. A cura di Centamore E., Dramis F Rome, in pressGoogle Scholar
  30. Gaeta M, Freda C, Christensen JN, Dallai L, Marra F, Karner DB, Scarlato P (2006) Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source and evolution of ultrapotassic magmas. Lithos 86(3–4):330–346CrossRefGoogle Scholar
  31. Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385CrossRefGoogle Scholar
  32. Gaeta M, Freda C, Marra F, Di Rocco T, Gozzi F, Arienzo I, Giaccio B, Scarlato P (2011) Petrology of the most recent ultrapotassic magmas from the Roman province (Central Italy). Lithos 127:298–308CrossRefGoogle Scholar
  33. Gaeta M, Freda C, Marra F, Arienzo I, Gozzi F, Jicha B, Di Rocco T (2016) Paleozoic metasomatism at the origin of Mediterranean ultrapotassic magmas: constraints from time-dependent geochemistry of Colli Albani volcanic products (Central Italy). Lithos 244:151–164CrossRefGoogle Scholar
  34. Gasperini D, Blichert Toft J, Bosch D, Del Moro A, Macera P, Albaréde F (2002) Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J Geophys Res 107(B12):2367–ECV 7-19.  https://doi.org/10.1029/2001JB000418 CrossRefGoogle Scholar
  35. Giaccio B, Messina P, Sposato A, Voltaggio M, Zanchetta G, Galadini F, Gori S, Santacroce R (2009) Tephra layers from Holocene lake sediments of the Sulmona Basin, Central Italy: implications for volcanic activity in peninsular Italy and tephrostratigraphy in the Central Mediterranean area. Quat Sci Rev 28(25–26):2710–2733CrossRefGoogle Scholar
  36. Giaccio B, Castorina F, Nomade S, Scardia G, Voltaggio M, Sagnotti L (2013a) Revised chronology of the Sulmona lacustrine succession, Central Italy. J Quat Sci 28(6):545–551CrossRefGoogle Scholar
  37. Giaccio B, Arienzo I, Sottili G, Castorina F, Gaeta M, Nomade S, Galli P, Messina P (2013b) Isotopic (Sr-Nd) and major element fingerprinting of distal tephras: an application to the Middle-Late Pleistocene markers from the Colli Albani volcano, Central Italy. Quat Sci Rev 67:190–206CrossRefGoogle Scholar
  38. Giaccio B, Galli P, Peronace E, Arienzo I, Nomade S, Cavinato GP, Mancini M, Messina P, Sottili G (2014) A 560-440 ka tephra record from the Mercure Basin, southern Italy: volcanological and tephrostratigraphic implications. J Quat Sci 29(3):232–248CrossRefGoogle Scholar
  39. Giaccio B, Regattieri E, Zanchetta G, Nomade S, Renne PR, Sprain CJ, Drysdale RN, Tzedakis PC, Messina P, Scardia G, Sposato A, Bassinot F (2015) Duration and dynamics of the best orbital analogue to the present interglacial. Geology 43(7):603–606CrossRefGoogle Scholar
  40. Goldstein SL, Deines P, Oelkers EH, Rudnick RL, Walter LM (2003) Standards for publication of isotope ratio and chemical data in chemical geology. Chem Geol 202:1–4Google Scholar
  41. Gozzi F, Gaeta M, Freda C, Mollo S, Di Rocco T, Marra F, Dallai L, Pack A (2014) Primary magmatic calcite reveals origin from crustal carbonate. Lithos 190–191:191–203CrossRefGoogle Scholar
  42. Hawkesworth CJ, Vollmer R (1979) Crustal contamination vs. enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69:151–165CrossRefGoogle Scholar
  43. Iacono Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emission at the Alban Hills (Central Italy): constraints from experimental petrology. J Volcanol Geotherm Res 166:91–105CrossRefGoogle Scholar
  44. Jicha BR, Singer BS, Sobol P (2016) Re-evaluation of the ages of 40Ar/39Ar sanidine standards and supereruptions in the western U.S. using a noblesse multi-collector mass spectrometer. Chem Geol 431:54–66CrossRefGoogle Scholar
  45. Karner DB, Marra F (1998) Correlation of fluviodeltaic aggradational sections with glacial climate history: a revision of the classical Pleistocene stratigraphy of Rome. Geol Soc Am Bull 110:748–758CrossRefGoogle Scholar
  46. Karner DB, Renne PR (1998) 40Ar/39Ar geochronology of Roman province tephra in the Tiber River valley: age calibration of middle Pleistocene sea-level changes. Geol Soc Am Bull 110:740–747CrossRefGoogle Scholar
  47. Karner DB, Marra F, Renne P (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219CrossRefGoogle Scholar
  48. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PF, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500e504–500e504.  https://doi.org/10.1126/science.1154339 CrossRefGoogle Scholar
  49. Laurora A, Malferrari D, Brigatti MF, Mottana A, Caprilli E, Giordano G, Funiciello R (2009) Crystal chemistry of trioctahedral micas in the top sequences of the Colli Albani volcano, Roman region, Central Italy. Lithos 113:507–520CrossRefGoogle Scholar
  50. Laurenzi MA, Villa IM (1987) 40Ar/39Ar chronostratigraphy of the Vico ignimbrites. Per Mineral 56:285–293Google Scholar
  51. Laurenzi M, Braschi E, Casalini M, Conticelli S (2015) New 40Ar–39Ar dating and revision of the geochronology of the Monte Amiata volcano, Central Italy. Ital J Geosci 134:255–265CrossRefGoogle Scholar
  52. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  53. Leicher N, Zanchetta G, Sulpizio R, Giaccio B, Wagner B, Nomade S, Francke A, Del Carlo P (2015) First tephrostratigraphic results of the DEEP site record from Lake Ohrid. Macedonia Biogeosciences Discuss 12:15411–15460.  https://doi.org/10.5194/bgd-12-15411-2015 CrossRefGoogle Scholar
  54. Marra F, Florindo F (2014) The subsurface geology of Rome: sedimentary processes, sea-level changes and astronomical forcing. Earth Sci Rev 136:1–20CrossRefGoogle Scholar
  55. Marra F, Sottili G, Gaeta M, Giaccio B, Jicha B, Masotta M, Palladino DM, Deocampo DM (2014) Major explosive activity in the Monti Sabatini Volcanic District (Central Italy) over the 800-390ka interval: geochronological-geochemical overview and tephrostratigraphic implications. Quat Sci Rev 94:74–101CrossRefGoogle Scholar
  56. Marra F, Jicha B, Florindo F (2017) 40Ar/39Ar dating of glacial termination VI: constraints to the duration of marine isotopic stage 13. Sci Rep 7:8908.  https://doi.org/10.1038/s41598-017-08614-6 CrossRefGoogle Scholar
  57. Marra F, Florindo F, Jicha B, Nomade S, Palladino D, Pereira A, Sottili G, Tolomei C (2019) Assessing volcano-tectonic hazard of the Monti Sabatini Volcanic District on the city of Rome (central Italy): evidence from new geochronologic constraints on the Tiber River MIS 5 terraces. Sci Rep 9:11496.  https://doi.org/10.1038/s41598-019-47585-8 CrossRefGoogle Scholar
  58. Masotta M, Gaeta M, Gozzi F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della via Tiberina eruptions (Sabatini Volcanic District, Central Italy). Lithos 118:119–130CrossRefGoogle Scholar
  59. Mazzeo FC, D’Antonio M, Arienzo I, Aulinas M, Di Renzo V, Gimeno D (2014) Subduction-related enrichment of the Neapolitan volcanoes (southern Italy) mantle source: new constraints on the characteristics of the slab-derived components. Chem Geol 386:165–183CrossRefGoogle Scholar
  60. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39(1):55–76CrossRefGoogle Scholar
  61. Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514CrossRefGoogle Scholar
  62. Nappi G, Mattioli M (2003) Evolution of the Sabatinian Volcanic District (Central Italy) as inferred by stratigraphic successions of its northern sector and geochronological data. Per Mineral 72:79–102Google Scholar
  63. Palladino DM, Gaeta M, Giaccio B, Sottili G (2014) On the anatomy of magma chamber and caldera collapse: the example of trachy-phonolitic explosive eruptions of the Roman province (Central Italy). J Volcanol Geotherm Res 281:12–26CrossRefGoogle Scholar
  64. Palladino DM, Valentine GA, Sottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Front Earth Sci 3:36.  https://doi.org/10.3389/feart.2015.00036 CrossRefGoogle Scholar
  65. Peccerillo A (1985) Roman Comagmatic Province (Central Italy): evidence for subduction-related magma genesis. Geology 13:103–106CrossRefGoogle Scholar
  66. Peccerillo A (1999) Multiple mantle metasomatism in Central-Southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318CrossRefGoogle Scholar
  67. Peccerillo A (2001) Geochemistry and petrogenesis of quaternary magmatism in Central-Southern Italy. Geochem Int 6:579–592Google Scholar
  68. Peccerillo A, Frezzotti ML (2015) Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. J Geol Soc 172:407–427.  https://doi.org/10.1144/jgs2014-085 CrossRefGoogle Scholar
  69. Pereira A, Nomade S, Falguères C, Bahain J-J, Tombret O, Garcia T, Voinchet P, Bulgarelli AG, Anzidei P (2017) 40Ar/39Ar and ESR/U-series data for the La Polledrara di Cecanibbio archaeological site (Lazio, Italy). J Archaeol Sci Rep 15:20–29Google Scholar
  70. Perini G, Francalanci L, Davidson JP, Ponticelli S (2004) Evolution and genesis of magmas from Vico volcano, Central Italy: multiple differentiation pathways and variable parental magmas. J Petrol 45:139–182CrossRefGoogle Scholar
  71. Petrosino P, Jicha BR, Mazzeo FC, Russo Ermolli E (2014) A high resolution tephrochronological record of MIS 14-12 in the southern Apennines (Acerno Basin, Italy). J Volcanol Geotherm Res 274:34–50CrossRefGoogle Scholar
  72. Pinti DL, Quidelleur X, Chiesa S, Ravazzi C, Gillot PY (2001) K–Ar dating of an early middle Pleistocene distal tephra in the interglacial varved succession of Pianico-Sellere (southern Alps, Italy). Earth Planet Sci Lett 188:1–7CrossRefGoogle Scholar
  73. Roulleau E, Pinti DL, Rouchon V, Quidelleur X, Gillot P-Y (2009) Tephro-chronostratigraphy of the lacustrine interglacial record of Piànico, Italian southern Alps: identifying the volcanic sources using radiogenic isotopes and trace elements. Quat Int 204(1–2):31–43CrossRefGoogle Scholar
  74. Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz et al. on “joint determination of 40K decay constants and 40Ar*/40K for the fish canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100.  https://doi.org/10.1016/j.gca.2011.06.021 CrossRefGoogle Scholar
  75. Rivera TA, Storey M, Schmitz MD, Crowley JL (2013) Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek rhyolite quaternary geochronology standard. Chem Geol 345:87–98CrossRefGoogle Scholar
  76. Sagnotti L, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Scardia G, Sprain CJ (2016) How fast was the Matuyama-Brunhes geomagnetic reversal? A new subcentennial record from the Sulmona Basin, Central Italy. Geophys J Int 204(2):798–812CrossRefGoogle Scholar
  77. Scardia G, Muttoni G (2009) Paleomagnetic investigations on the Pleistocene lacustrine sequence of Piànico-Sèllere (northern Italy). Quat Int 204(1–2):44–53CrossRefGoogle Scholar
  78. Sottili G, Palladino DM, Zanon V (2004) Plinian activity during the early eruptive history of the Sabatini Volcanic District, Central Italy. J Volcanol Geotherm Res 135:361–379CrossRefGoogle Scholar
  79. Sottili G, Palladino DM, Marra F, Jicha B, Karner DB, Renne P (2010a) Geochronology of the most recent activity in the Sabatini Volcanic District, Roman province, Central Italy. J Volcanol Geotherm Res 196:20–30CrossRefGoogle Scholar
  80. Sottili G, Taddeucci J, Palladino DM (2010b) Constraints on magma-wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs. J Volcanol Geoth Res 192(1–2):27–34CrossRefGoogle Scholar
  81. Sottili G, Palladino DM, Gaeta M, Masotta M (2012) Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman province, Central Italy). Bull Volcanol 74:163–186CrossRefGoogle Scholar
  82. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168(3–4):279–281CrossRefGoogle Scholar
  83. Tecchiato V, Gaeta M, Mollo S, Scarlato P, Bachmann O, Perinelli C (2018a) Petrological constraints on the high-Mg basalts from Capo Marargiu (Sardinia, Italy): evidence of cryptic amphibole fractionation in polybaric environments. J Volcanol Geotherm Res 349:31–46CrossRefGoogle Scholar
  84. Tecchiato V, Gaeta M, Mollo S, Bachmann O, von Quadt A, Scarlato P (2018b) Snapshots of primitive arc magma evolution recorded by clinopyroxene textural and compositional variations: the case of hybrid crystal-rich enclaves from Capo Marargiu Volcanic District (Sardinia, Italy). Am Mineral 103:899–910CrossRefGoogle Scholar
  85. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol 94:85–104CrossRefGoogle Scholar
  86. Valentine GA, Sottili G, Palladino DM, Taddeucci J (2015) Tephra ring interpretation in light of evolving maar-diatreme concepts: Stracciacappa maar (Central Italy). J Volcanol Geotherm Res 308:19–29CrossRefGoogle Scholar
  87. Washington HS (1906). The roman comagmatic region. Carnegie Institute Year Book 56:206–214Google Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraSapienza-Università di RomaRomeItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio VesuvianoNaplesItaly
  3. 3.Istituto di Geologia Ambientale e Geoingegneria (IGAG)-CNR, c/o Dipartimento di Scienze della TerraSapienza-Università di RomaRomeItaly
  4. 4.Istituto di Geologia Ambientale e Geoingegneria (IGAG)-CNRRomeItaly
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia, Sezione Sismologia e TettonofisicaRomeItaly

Personalised recommendations