Advertisement

Bulletin of Volcanology

, 81:25 | Cite as

Investigation of surge-derived pyroclastic flow formation by numerical modelling of the 25 June 1997 dome collapse at Soufrière Hills Volcano, Montserrat

  • Valentin GueugneauEmail author
  • Karim Kelfoun
  • Timothy Druitt
Research Article
  • 51 Downloads

Abstract

Deposits from ash-cloud surges associated with dome collapse can, under certain conditions, be remobilised to form surge-derived pyroclastic flows (SDPFs). Using numerical modelling, we reproduce the emplacement of these flows and investigate the conditions that favour their genesis. We use the new version of the numerical model VolcFlow, which simulates the two components of a pyroclastic flow: the basal avalanche and the overriding ash-cloud surge. The basal avalanche (primary block-and-ash flows and SDPFs) are simulated using three previously published rheological laws: plastic, frictional and frictional velocity-weakening rheologies. Applied to the 25 June 1997 dome collapse at Soufrière Hills Volcano, the models reproduce to different degrees the deposit footprints formed by the block-and-ash flows, the ash-cloud surges and the SDPFs. In the plastic model, SDPFs occur if the ash-cloud surge deposit exceeds a threshold thickness that allows it to remobilise and flow. In the frictional models, SDPFs occur only if ash-cloud surge deposition takes place on a slope exceeding the friction angle of the ash. Results also highlight that SDPFs appeared so clearly in 1997 at Montserrat due to a combination of topographic factors: (i) a bend in the Mosquito Ghaut drainage that allowed the ash-cloud surges to detach, (ii) a depositional area on the watershed between the eastern and western drainage channels and (iii) a network of tributaries that drained all the remobilised mass into Dyer’s River to form a single, large SDPF. Our model could be a promising tool for the future forecasting of hazards posed by surge-derived pyroclastic flows.

Keywords

Pyroclastic flows Soufrière Hills Volcano Dome collapse Numerical modelling Rheology Volcanic hazards 

Notes

Acknowledgments

We are very grateful to Dr. Adam Stinton and the Montserrat Volcano Observatory for providing the digital elevation model of Montserrat Island and also Dr. Anne Mangeney for discussions about seismic waves.

Funding information

The development of the numerical code was funded by the Domerapi—ANR (French Agence Nationale de la Recherche) Project (ANR-12-BS06-0012). This research was (partly) supported by the French Government Laboratory of Excellence initiative no. ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 336.

Supplementary material

445_2019_1284_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2072 kb)
445_2019_1284_MOESM2_ESM.avi (121.5 mb)
ESM 2 (AVI 124404 kb)

References

  1. Annen C, Wagner J-J (2003) The impact of volcanic eruptions during the 1990s. Nat Hazard Rev 4(4):169–175.  https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(169) CrossRefGoogle Scholar
  2. Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133.  https://doi.org/10.1146/annurev.fluid.010908.16524 CrossRefGoogle Scholar
  3. Branney MJ and Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society Memoir No 27.  https://doi.org/10.1086/427850
  4. Brown RJ and Andrews DMG (2015) Deposits of pyroclastic density currents. The Encyclopedia of Volcanoes (Second Edn). Elsevier Inc.  https://doi.org/10.1016/B978-0-12-385938-9.00036-5
  5. Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418.  https://doi.org/10.1016/S0012-821X(02)00789-6 CrossRefGoogle Scholar
  6. Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 26(5):537–540.  https://doi.org/10.1029/1999GL900051 CrossRefGoogle Scholar
  7. Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231–232:87–108.  https://doi.org/10.1016/j.jvolgeores.2012.02.015 CrossRefGoogle Scholar
  8. Charbonnier SJ, Germa A, Connor CB, Gertisser R, Preece K, Komorowski JC, Lavigne F, Dixon T, Connor L (2013) Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations. J Volcanol Geotherm Res 261:295–315.  https://doi.org/10.1016/j.jvolgeores.2012.12.021 CrossRefGoogle Scholar
  9. Cole PD, Calder ES, Druitt TH, Hoblitt R, Robertson R, Sparks RSJ (1998) Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys Res Lett 25(18):3425–3428CrossRefGoogle Scholar
  10. Cole PD, Calder ES, Sparks RSJ, Clarke AB, Druitt TH, Young SR, Herd RA, Harford CL, Norton GE (2002) Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):231–262CrossRefGoogle Scholar
  11. Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32(21):1–4.  https://doi.org/10.1029/2005GL023954 CrossRefGoogle Scholar
  12. Denlinger RP (1987) A model for generation of ash clouds by pyroclastic flows, with application to the 1980 eruptions at Mount St. Helens, Washington. J Geophys Res 92:284–298CrossRefGoogle Scholar
  13. Druitt TH (1998) Pyroclastic density currents. Geol Soc Lond, Spec Publ 145(1):145–182.  https://doi.org/10.1144/GSL.SP.1996.145.01.08 CrossRefGoogle Scholar
  14. Druitt TH, Kokelaar BP (Eds.) (2002) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs 21:263–279Google Scholar
  15. Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RSJ, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufriere Hills Volcano, Montserrat: an important volcanic hazard. Geol Soc Lond Mem 21(1):263–279.  https://doi.org/10.1144/GSL.MEM.2002.021.01.12 CrossRefGoogle Scholar
  16. Dufek J (2016) The fluid mechanics of pyroclastic density currents. Annu Rev Fluid Mech 48:459–485.  https://doi.org/10.1146/annurev-fluid-122414-034252 CrossRefGoogle Scholar
  17. Dufek J, Manga M (2008) In situ production of ash in pyroclastic flows. J Geophys Res Solid Earth 113(9):B09207.  https://doi.org/10.1029/2007JB005555 CrossRefGoogle Scholar
  18. Gueugneau V, Kelfoun K, Roche O, Chupin L (2017) Effects of pore pressure in pyroclastic flows: numerical simulation and experimental validation. Geophys Res Lett 44(5):2194–2202.  https://doi.org/10.1002/2017GL072591 CrossRefGoogle Scholar
  19. Hibert C, Mangeney A, Grandjean G, Shapiro NM (2011) Slope instabilities in Dolomieu crater, Réunion Island : From seismic signals to rockfall characteristics. J Geophys Res 116(December):1–18.  https://doi.org/10.1029/2011JF002038 CrossRefGoogle Scholar
  20. Iverson RM, Vallance JW (2001) New views of granular mass flows. Geology 29(2):115–118.  https://doi.org/10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO CrossRefGoogle Scholar
  21. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730.  https://doi.org/10.1038/nature04801 CrossRefGoogle Scholar
  22. Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J Geophys Res 116(8):1–14.  https://doi.org/10.1029/2010JB007622 CrossRefGoogle Scholar
  23. Kelfoun K (2017) A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents. J Geophys Res Solid Earth 122:1–19.  https://doi.org/10.1002/2017JB014013 CrossRefGoogle Scholar
  24. Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71(9):1057–1075.  https://doi.org/10.1007/s00445-009-0286-6 CrossRefGoogle Scholar
  25. Kelfoun K, Gueugneau V, Komorowski J-C, Cholik N, Merciecca C (2017) Simulation of block-and-ash flows and ash-cloud surges of the 2010 eruption of Merapi volcano with a two-layer model. J Geophys Res Solid Earth 122:1–16.  https://doi.org/10.1002/2017JB013981 CrossRefGoogle Scholar
  26. Komorowski JC, Legendre Y, Christopher T, Bernstein M, Stewart R, Joseph E et al (2010) Insights into processes and deposits of hazardous vulcanian explosions at Soufrière Hills Volcano during 2008 and 2009 (Montserrat, West Indies). Geophys Res Lett 37(11):1–6.  https://doi.org/10.1029/2010GL042558 CrossRefGoogle Scholar
  27. Komorowski JC, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geotherm Res 261(November 2010):260–294.  https://doi.org/10.1016/j.jvolgeores.2013.01.007 CrossRefGoogle Scholar
  28. le Roux JP (1992) Settling velocity of spheres: a new approach. Sediment Geol 81(1–2):11–16.  https://doi.org/10.1016/0037-0738(92)90053-T CrossRefGoogle Scholar
  29. Levy C, Mangeney A, Bonilla F, Hibert C, Calder ES, Smith PJ (2015) Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat. J Geophys Res B Solid Earth 120(11):7536–7557.  https://doi.org/10.1002/2015JB012151 CrossRefGoogle Scholar
  30. Loughlin SC, Baxter PJ, Aspinall WP, Darroux B, Harford CL, Miller AD (2002a) Eyewitness accounts of the 25 June 1997 pyroclastic flows and surges at Soufrière Hills Volcano, Montserrat, and implications for disaster mitigation. Geol Soc Lond Mem 21(Septembre 1996):211–233CrossRefGoogle Scholar
  31. Loughlin SC, Calder ES, Clarke A, Cole PD, Luckett R, Mangan MT, Pyle DM, Sparks RSJ, Voight B, Watts RB (2002b) Pyroclastic flows and surges generated by the 25 June 1997 dome collapse, Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):191–209.  https://doi.org/10.1144/GSL.MEM.2002.021.01.09 CrossRefGoogle Scholar
  32. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5:1–9.  https://doi.org/10.1038/ncomms4417 CrossRefGoogle Scholar
  33. Mangeney A, Staron L, Volfson D, Tsimring L (2007) Comparison between discrete and continuum modeling of granular spreading. WSEAS Trans Math 6(2):373–380Google Scholar
  34. Ogburn SE, Calder ES, Cole PD, Stinton AJ (2014) The effect of topography on ash-cloud surge generation and propagation. Geol Soc Lond Mem 39(1):179–194.  https://doi.org/10.1144/M39.10 CrossRefGoogle Scholar
  35. Ogburn SE, Calder ES (2017) The relative effectiveness of empirical and physical models for simulating the dense undercurrent of pyroclastic flows under different emplacement conditions. Front Earth Sci 5(November).  https://doi.org/10.3389/feart.2017.00083
  36. Pouliquen O, Forterre Y (2001) Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J Fluid Mech 453(1998):19.  https://doi.org/10.1017/S0022112001006796 CrossRefGoogle Scholar
  37. Pudasaini SP and Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches.  https://doi.org/10.1007/978-3-540-32687-8
  38. Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188CrossRefGoogle Scholar
  39. Sparks RSJ, Wilson L, Hulme G (1978) Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse. J Geophys Res 83(8):1727–1739.  https://doi.org/10.1029/JB083iB04p01727 CrossRefGoogle Scholar
  40. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley.  https://doi.org/10.1017/S0016756897278258
  41. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65.  https://doi.org/10.1016/j.jvolgeores.2014.06.014 CrossRefGoogle Scholar
  42. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49(4):616–630.  https://doi.org/10.1007/BF01079967 CrossRefGoogle Scholar
  43. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73(12):159–165Google Scholar
  44. Wadge G, Voight B, Sparks RSJ, Cole PD, Loughlin SC, Robertson REA (2014) An overview of the eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010. Geol Soc Lond Mem 39:1–40.  https://doi.org/10.1144/M39.1 CrossRefGoogle Scholar
  45. Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):115–152.  https://doi.org/10.1144/GSL.MEM.2002.021.01.06 CrossRefGoogle Scholar
  46. Wilson CJN (1980) The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J Volcanol Geotherm Res 8:231–249CrossRefGoogle Scholar
  47. Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies : the anatomy of a pyroclastic flow. J Geol Soc Lond 139:581–592CrossRefGoogle Scholar
  48. Woods AW, Bursik MI (1991) Particle fallout, thermal disequeilibrium and volcanic plumes. Bull Volcanol 53:559–570CrossRefGoogle Scholar
  49. Woods AW, Sparks RSJ, Ritchie LJ, Batey J, Gladstone C, Bursik MI (2002) The explosive decompression of a pressurized volcanic dome: the 26 December 1997 collapse and explosion of Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):457–465.  https://doi.org/10.1144/GSL.MEM.2002.021.01.20 CrossRefGoogle Scholar
  50. Xuan J (2004) Turbulence factors for threshold velocity and emission rate of atmospheric mineral dust. Atmos Environ 38:1777–1783.  https://doi.org/10.1016/j.atmosenv.2003.12.030 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.CNRS, IRD, OPGC, Laboratoire Magmas et VolcansUniversité Clermont AuvergneClermont-FerrandFrance

Personalised recommendations