Advertisement

Bulletin of Volcanology

, 81:23 | Cite as

Mineralogy and chemistry of incrustations resulting from the 2014–2015 eruption of Fogo volcano, Cape Verde

  • Teresa P. SilvaEmail author
  • Daniel P. S. De Oliveira
  • João P. Veiga
  • Paula Ávila
  • Carla Candeias
  • Eduardo Salas-Colera
  • Rita Caldeira
Research Article
  • 147 Downloads

Abstract

The last eruption of the Fogo volcano, in the Cape Verde Archipelago, occurred in 2014–2015. A mineralogical and chemical study was undertaken on fumarole incrustations resulting from this event and compared with results obtained from the previous 1995 eruption. The mineralogical constitution of the fumarole deposits was assessed by X-ray diffraction and the chemical characterization was performed through X-ray fluorescence spectrometry with a wavelength dispersive system and by energy dispersive X-ray fluorescence at the European Synchrotron Radiation Facility. The most common compounds/minerals in solid deposits were sulfur, sodium chloride, and calcium sulphates with variable degrees of hydration, sodium sulphate, hydrated sulphates of sodium aluminum, potassium magnesium, or sodium magnesium and a fluorine-bearing mineral. Thenardite (Na2SO4) and its polymorph (phase III) were found simultaneously for the first time in incrustations, to the best of our knowledge. A large span of minor and trace elements present in incrustations (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ba, Ce, Tl, Pb) were also identified, some of them potentially hazardous to animal and human health. This study reveals that low temperature incrustations, allied to the atmospheric conditions of Fogo volcano, constitute a natural laboratory to observe the process of mineral formation—namely the Na2SO4 phase III considered metastable.

Keywords

Fogo volcano Cape Verde Fumaroles Incrustations Volcanic gases Minerals Human and animal health 

Notes

Acknowledgments

This research received financial support from FCT (Fundação para a Ciência e Tecnologia) through project FIRE (PTDC/GEO-GEO/1123/2014). We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and in particular in using beamline BM 25A. Special thanks are due to the guides Manuel Montrond Fernandes (Izaquiel) and Edimar Montrond that helped us in the Fogo volcano. J.P. Veiga acknowledges funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT-Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013 and the funding from the European Union Horizon 2020 research and innovation programme H2020-DRS-2015 GA nr. 700395 (HERACLES project). Carla Candeias would also like to acknowledge FCT by the grant SFRH/BPD/99636/2014 and UID/GEO/04035/2013. Special thanks are also due to Dr. Tonči Balić-Žunić, an anonymous reviewer and to the editors for their comments on the manuscript. We are also grateful to Dr. Lídia Quental for the satellite image of Fogo Island.

References

  1. Africano F, Bernard A (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res 97:475–495.  https://doi.org/10.1016/S0377-0273(99)00162-6 CrossRefGoogle Scholar
  2. Africano F, Van Rompaey G, Bernard A, Le Guern F (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space 54:275–286.  https://doi.org/10.1186/BF03353027 CrossRefGoogle Scholar
  3. Aiuppa A (2015) Volcanic-gas monitoring. In: Schmidt A, Fristad KE, Elkins-Tanton LT (eds) Volcanism and Global Environmental Change. Cambridge University Press, pp 81–96.  https://doi.org/10.1017/CBO9781107415683.009
  4. Allen AG, Oppenheimer C, Ferm M, Baxter PJ, Horrocks LA, Galle B, McGonigle AJS, Duffell HJ (2002) Primary sulfate aerosol and associated emissions from Masaya volcano, Nicaragua. J Geophys Res 107:4682.  https://doi.org/10.1029/2002JD002120 CrossRefGoogle Scholar
  5. Assunção CFT, Machado F, Gomes RA (1965) On the occurrence of carbonatites in the Cape Verde Islands. Bol Soc Geol Port 16:179–188Google Scholar
  6. Baker PE, Gass IG, Harris PG, Le Maitre RW (1964) The volcanological report of the Royal Society expedition to Tristan da Cunha, 1962. Philos Trans R Soc Lond A 256:439–575CrossRefGoogle Scholar
  7. Balić-Žunić T, Garavelli A, Jakobsson SP, Jonasson K, Katerinopoulos A, Kyriakopoulos K, Acquafredda P (2016) Fumarolic minerals: an overview of active European volcanoes. In: Nemeth K (ed) Updates in volcanology - from volcano modelling to volcano geology. InTech open access publishers, pp 267–322.  https://doi.org/10.5772/64129 Google Scholar
  8. Benedetto C, Forti P, Galli E, Rossi A (1998) Chemical deposits in volcanic caves of Argentina. Int J Speleol 27B:155–162CrossRefGoogle Scholar
  9. Bobade SM, Gopalan P, Kulkarni AR (2009) Phase transition in Na2SO4: all five polymorphic transformations in DSC. Ionics 15:353–355.  https://doi.org/10.1007/s11581-008-0272-6 CrossRefGoogle Scholar
  10. Brodale GE, Giauque WE (1972) The relationship of crystalline forms I, III, IV, and V of anhydrous sodium sulfate as determined by the third law of thermodynamics. J Phys Chem 76:737–743.  https://doi.org/10.1021/j100649a024 CrossRefGoogle Scholar
  11. Carvalho MR, Mateus A, Nunes JC, Carvalho JM (2014) Origin and chemical nature of the thermal fluids at Caldeiras da Ribeira Grande (Fogo Volcano, S. Miguel Island, Azores). In: Sauer U, Dietrich P (Guest eds) Environ Earth Sci, Springer.  https://doi.org/10.1007/s12665-014-3585-y CrossRefGoogle Scholar
  12. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57:99–110.  https://doi.org/10.1007/BF00301400 CrossRefGoogle Scholar
  13. Chiodini G, Brombach T, Caliro S, Cardellini C (2002) Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophys Res Lett 29:6–1-6-4.  https://doi.org/10.1029/2001GL014355 CrossRefGoogle Scholar
  14. Choi B-K, Lockwood DJ (2005) Peculiarities of the structural phase transitions in Na2SO4 (V): a Raman scattering study. J Phys Condens Matter 17:6095–6108.  https://doi.org/10.1088/0953-8984/17/38/013 CrossRefGoogle Scholar
  15. Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fuoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121:271–291.  https://doi.org/10.1016/S0377-0273(02)00465-1 CrossRefGoogle Scholar
  16. Day SJ, Heleno da Silva SIN, Fonseca JFBD (1999) A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands. J Volcanol Geotherm Res 94:191–218.  https://doi.org/10.1016/S0377-0273(99)00103-1 CrossRefGoogle Scholar
  17. De Moor JM, Fischer TP, Sharp ZD, King PL, Wilke M, Botcharnikov RE, Cottrell E, Zelenski M, Marty B, Klimm K, Rivard C, Ayalew D, Ramirez C, Kelley KA (2013) Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem Geophys Geosyst 14:4076–4108.  https://doi.org/10.1002/ggge.20255 CrossRefGoogle Scholar
  18. Deer WA, Howie RA, Zussman J (1967) Gypsum. In: Rock-forming minerals, non-silicates, vol 5. Longmans, London, pp 202–217Google Scholar
  19. Dionis SM, Melián G, Rodríguez F, Hernández PA, Padrón E, Pérez NM, Barrancos J, Padilla G, Sumino H, Fernandes P, Bandomo Z, Silva S, Pereira JM, Semedo H (2015a) Diffuse volcanic gas emission and thermal energy release from the summit crater of Pico do Fogo, Cape Verde. Bull Volcanol 77:10.  https://doi.org/10.1007/s00445-014-0897-4 CrossRefGoogle Scholar
  20. Dionis SM, Pérez NM, Hernández PA, Melián G, Rodríguez F, Padrón E, Sumino H, Barrrancos J, Padilla GD, Fernandes P, Bandomo Z, Silva S, Pereira JM, Semedo H, Cabral J (2015b) Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa. Earth Planets Space 67:48.  https://doi.org/10.1186/s40623-015-0219-x CrossRefGoogle Scholar
  21. Doucelance R, Hammouda T, Moreira M, Martins JC (2010) Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochim Cosmochim Acta 74:7261–7282.  https://doi.org/10.1016/j.gca.2010.09.024 CrossRefGoogle Scholar
  22. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279.  https://doi.org/10.1016/S1369-5266(03)00030-X CrossRefGoogle Scholar
  23. Eysel W, Höfer HH, Keester KL, Hahn T (1985) Crystal chemistry and structure of Na2SO4 (I) and its solid solutions. Acta Crystallogr B 41:5–11CrossRefGoogle Scholar
  24. Fang JH, Robinson PD (1972) Crystal structures and mineral chemistry of double-salt hydrates: II. The crystal structure of mendozite, NaAl (SO4)2.11H2O. Am Min 57:1081–1088Google Scholar
  25. Ferrara G, Garavelli A, Pinarelli L, Vurro F (1995) Lead isotope composition of the sublimates from the fumaroles of Vulcano (Aeolian Islands, Italy): inferences on the deep fluid circulation. Bull Volcanol 56:621–625.  https://doi.org/10.1007/BF00301466 CrossRefGoogle Scholar
  26. Figueiredo MO (1997) Orange gel masses associated with the eruption of 1995 on Fogo Island: a new mineral? (in Portuguese). In: Réffega A et al (eds) A erupção vulcânica de 1995 na ilha do Fogo, Cabo Verde, IICT, Lisbon, Portugal, pp 201–210Google Scholar
  27. Figueiredo MO, Silva LC, Pereira da Silva T, Torres PC, Mendes MH (1997) Mineralogy of the incrustations resulting from the fumarole activity from the 1995 eruption of the Fogo island, Cape Verde (in Portuguese). In: Réffega A et al (eds) A erupção vulcânica de 1995 na ilha do Fogo, Cabo Verde, IICT, Lisbon, Portugal, pp 187–199Google Scholar
  28. Figueiredo MO, Silva TP, Basto MJ, Ramos MT, Chevallier P (1999) Indirect monitoring of heavy metals in volcanic gases by synchrotron X-ray microprobe (μ-SRXRF) qualitative analysis of sublimates. J Anal At Spectrom 14:505–507.  https://doi.org/10.1039/A808103D CrossRefGoogle Scholar
  29. Figueiredo E, Fonte J, Lima A, Veiga JP, Silva RJC, Mirão J (2018) Ancient tin production: slags from the Iron age Carvalhelhos hillfort (NW Iberian Peninsula). J Archaeol Sci 93:1–16.  https://doi.org/10.1016/j.jas.2018.02.007 CrossRefGoogle Scholar
  30. Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J 42:21–38.  https://doi.org/10.2343/geochemj.42.21 CrossRefGoogle Scholar
  31. Flörke OW (1952) Kristallographische und röntgenographische Untersuchungen im System, CaSO4-CaSO4.2H2O. Neues Jahrb Min, Abh 84:189–240Google Scholar
  32. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 221–256.  https://doi.org/10.1007/978-3-642-80087-0_7 CrossRefGoogle Scholar
  33. Global Volcanism Program (2017) Report on Fogo (Cape Verde). In: Venzke E (ed) Bulletin of the global volcanism network 42:9. Smithsonian InstitutionGoogle Scholar
  34. Le Guern F, Bernard A (1982) Etude des mecanismes de condensation des gaz magmatiques - exemple de l’Etna (Italie). Bull Volcanol 45:161–166.  https://doi.org/10.1007/BF02597725 CrossRefGoogle Scholar
  35. Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Miner 52:171–200Google Scholar
  36. Hernández PA, Melián GV, Dionis S, Barrancos J, Padilla G, Padrón E, Silva S, Fernandes P, Cardoso N, Pérez NM, Rodríguez F, Asensio-Ramos M, Calvo D, Semedo H, Alfama V (2015) Chemical composition of volcanic gases emitted during the 2014-15 Fogo eruption, Cape Verde. Geophys Res Abstr 17:EGU2015–EGU9577Google Scholar
  37. Jakobsson SP, Leonardsen ES, Balic-Zunic T, Jónsson SS (2008) Encrustations from three recent volcanic eruptions in Iceland: the 1963-1967 Surtsey, the 1973 Eldfelland and the 1991 Hekla eruptions. Fjölrit Náttúrufræðistofnunar 52:65Google Scholar
  38. Jenkins SF, Day SJ, Faria BE, Fonseca JFBD (2017) Damage from lava flows: insights from the 2014-2015 eruption of Fogo, Cape Verde. J Appl Volcanol 6:6.  https://doi.org/10.1186/s13617-017-0057-6 CrossRefGoogle Scholar
  39. Kishimura H, Imasu Y, Matsumoto H (2015) Thermal dehydration of potash alum studied by Raman spectroscopy and X-ray diffraction analysis. Mater Chem Phys 149-150:99–104.  https://doi.org/10.1016/j.matchemphys.2014.09.049 CrossRefGoogle Scholar
  40. Kodosky L, Keskinen M (1990) Fumarole distribution, morphology, and encrustation mineralogy associated with the 1986 eruptive deposits of Mount St. Augustine, Alaska. Bull Volcanol 52:175–185.  https://doi.org/10.1007/BF00334803 CrossRefGoogle Scholar
  41. Kracek FC (1929) The polymorphism of sodium sulphate. I: thermal analysis. J Phys Chem 33:1281–1303.  https://doi.org/10.1021/j150303a001 CrossRefGoogle Scholar
  42. Lacroix A (1907) Les mineraux des fumerolles de l’eruption du Vesuve en avril 1906. Bull Soc Min Fr 30:219–226Google Scholar
  43. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633.  https://doi.org/10.1016/j.scitotenv.2008.07.056 CrossRefGoogle Scholar
  44. Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction. Anal Chem 78:4683–4689.  https://doi.org/10.1021/ac0603936 CrossRefGoogle Scholar
  45. Lombardi G, Sposato A (1981) Tamarugite from Vulcano, Aeolian Islands, Italy. Can Mineral 19:403–407Google Scholar
  46. Maccaferri F, Richter N, Walter TR (2017) The effect of giant lateral collapses on magma pathways and the location of volcanism. Nat Commun 8:1097.  https://doi.org/10.1038/s41467-017-01256-2 CrossRefGoogle Scholar
  47. Mackenzie KM, Rodgers KA, Browne PRL (1995) Tamarugire, NaAl (SO4)2.6H2O, from Te Kopia, New Zealand. Min Mag 59:754–757CrossRefGoogle Scholar
  48. Martin RS, Sawyer GM, Spampinato L, Salerno GG, Ramirez C, Ilyinskaya E, Witt MLI, Mather TA, Watson IM, Phillips JC, Oppenheimer C (2010) A total volatile inventory for Masaya volcano, Nicaragua. J Geophys Res 115:B09215.  https://doi.org/10.1029/2010JB007480 CrossRefGoogle Scholar
  49. Martins S, Mata J, Munhá J, Mendes MH, Maerschalk C, Caldeira R, Mattielli N (2010) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol 99:43–65.  https://doi.org/10.1007/s00710-009-0078-x CrossRefGoogle Scholar
  50. Mata J, Martins S, Mattielli N, Madeira J, Faria B, Ramalho RS, Silva P, Moreira M, Caldeira R, Moreira M, Rodrigues J, Martins L (2017) The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): evidence for small-scale mantle heterogeneity. Lithos 288-289:91–107.  https://doi.org/10.1016/j.lithos.2017.07.001 CrossRefGoogle Scholar
  51. Mehrotra BN, Hahn T, Arnold H, Eysel W (1975) Polymorphism of Na2SO4. Acta Crystallogr A 31(Supplement):S79Google Scholar
  52. Melián G, Tassi F, Pérez N, Hernández P, Sortino F, Vaselli O, Padrón E, Nolasco D, Barrancos J, Padilla G, Rodríguez F, Dionis S, Calvo D, Notsu K, Sumino H (2012) A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide volcano (Tenerife, Canary Islands): a geochemical evidence for the 2004–2005 seismic–volcanic crisis. Bull Volcanol 74:1465–1483.  https://doi.org/10.1007/s00445-012-0613-1 CrossRefGoogle Scholar
  53. Naughton JJ, Greenberg VA, Goguel R (1976) Incrustations and fumarolic condensates at Kilauea volcano, Hawaii: field, drill-hole and laboratory observations. J Volcanol Geotherm Res 1:149–165.  https://doi.org/10.1016/0377-0273(76)90004-4 CrossRefGoogle Scholar
  54. Orlando V, Franco T, Dario T, Robert PJ, Antonio C (2011) Submarine and inland gas discharges from the Campi Flegrei (southern Italy) and the Pozzuoli Bay: geochemical clues for a common hydrothermal-magmatic source. Procedia Earth Planet Sci 4:57–73.  https://doi.org/10.1016/j.proeps.2011.11.007 CrossRefGoogle Scholar
  55. Óskarsson N (1981) The chemistry of icelandic lava incrustations and the latest stages of degassing. J Volcanol Geotherm Res 10:93–111.  https://doi.org/10.1016/0377-0273(81)90057-3 CrossRefGoogle Scholar
  56. Óskarsson N (1984) Monitoring of fumarole discharge during the 1975–1982 rifting in Krafla volcanic center, North Iceland. J Volcanol Geotherm Res 22:97–121.  https://doi.org/10.1016/0377-0273(84)90036-2 CrossRefGoogle Scholar
  57. Palache C, Berman H, Frondel C (1951) The system of mineralogy. Wiley, LondonGoogle Scholar
  58. Paonita A, Federico C, Bonfanti P, Capasso G, Inguaggiato S, Italiano F, Madonia P, Pecoraino G, Sortino F (2013) The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim Cosmochim Acta 120:158–178.  https://doi.org/10.1016/j.gca.2013.06.015 CrossRefGoogle Scholar
  59. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Lykova IS, Vigasina MF, Sidorov EG, Pushcharovsky DY (2014) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Min Mag 78:905–917.  https://doi.org/10.1180/minmag.2014.078.4.10 CrossRefGoogle Scholar
  60. Pekov IV, Gurzhiy VV, Zubkova NV, Agakhanov AA, Belakovskiy DI, Vigasina MF, Sidorov EG (2016) Metathénardite, IMA 2015-102. CNMNC newsletter no. 30, April 2016, page 408. Min Mag 80:407–413.  https://doi.org/10.1180/minmag.2016.080.081 CrossRefGoogle Scholar
  61. Pelloux A (1927) The minerals of Vesuvius. Am Miner 12:14–21Google Scholar
  62. Prasad PSR, Ravikumar N, Krishnamurthy ASR, Sarma LP (1998) Role of impurities in gypsum-bassanite phase transition: a comparative Raman study. Curr Sci 75:1410–1414Google Scholar
  63. Quisefit JP, Toutain JP, Bergametti G, Javoy M, Cheynet B, Person A (1989) Evolution versus cooling of gaseous volcanic emissions from Momotombo volcano, Nicaragua: thermochemical model and observations. Geochim Cosmochim Acta 53:2591–2608.  https://doi.org/10.1016/0016-7037(89)90131-2 CrossRefGoogle Scholar
  64. Rasmussem SE, Jørgensen J-E, Lundtoft B (1996) Structures and phase transitions of Na2SO4. J Appl Crystallogr 29:42–47.  https://doi.org/10.1107/S0021889895008818 CrossRefGoogle Scholar
  65. Ribeiro O (1998) The Fogo Island and its eruptions (in Portuguese). Comissão Nacional para as Comemorações dos Descobrimentos Portugueses, LisbonGoogle Scholar
  66. Richter N, Favalli M, Dalfsen EZ, Fornaciai A, Fernandes RMS, Pérez NM, Levy J, Victória SS, Walter TR (2016) Lava flow hazard at Fogo volcano, Cabo Verde, before and after the 2014-2015 eruption. Nat Hazards Earth Syst Sci 16:1925–1951.  https://doi.org/10.5194/nhess-16-1925-2016 CrossRefGoogle Scholar
  67. Rodríguez-Mercado JJ, Altamirano-Lozano M (2013) Genetic toxicology of thallium: a review. Drug Chem Toxicol 36:369–383.  https://doi.org/10.3109/01480545.2012.710633 CrossRefGoogle Scholar
  68. Rodriguez-Navarro C, Doehnea E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534CrossRefGoogle Scholar
  69. Rose WI (1973) Pattern and mechanism of volcanic activity at the Santiaguito volcanic dome, Guatemala. Bull Volcanol 37:73–94.  https://doi.org/10.1007/BF02596881 CrossRefGoogle Scholar
  70. Rosenberg PE (1988) Aluminum fluoride hydrates, volcanogenic salts from mount Erebus, Antarctica. Am Miner 73:855–860Google Scholar
  71. Shinohara H (2013) Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res 268:46–63.  https://doi.org/10.1016/j.jvolgeores.2013.10.007 CrossRefGoogle Scholar
  72. Silva TP (1999) Minerochemistry of incrustations and fumarole sublimates from Fogo island volcano (Cape Verde) (in Portuguese). Dissertation equivalent to PhD, IICT-Instituto de Investigação Científica Tropical (ed), Lisbon, Portugal, 159 ppGoogle Scholar
  73. Silva LC, Le Bas MJ, Robertson AHF (1981) An oceanic carbonatite volcano on Santiago, Cape Verde Islands. Nature 294:644–645.  https://doi.org/10.1038/294644a0 CrossRefGoogle Scholar
  74. Silva LC, Mendes MH, Torres PC, Palácios T, Munhá JM (1997) Petrography and mineralogy of the volcanic formations from the 1995 eruption of the Fogo island, Cape Verde (in Portuguese). In: Réffega A et al. (eds) A erupção vulcânica de 1995 na ilha do Fogo, Cabo Verde, IICT, Lisbon, Portugal, pp 165–170Google Scholar
  75. Silva TP, de Oliveira D, Veiga JP, Ávila P, Candeias C, Salas-Colera E, Caldeira R (2018) Selenium retained by minerals from volcanic fumaroles at Fogo island (Cape Verde). In: Oliveira A et al (eds) Abstracts book of XIV Congresso de Geoquímica dos Países de Língua Portuguesa, UTAD, Portugal, pp 511–514Google Scholar
  76. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta 62:63–68.  https://doi.org/10.1016/j.sab.2006.12.002 CrossRefGoogle Scholar
  77. Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306.  https://doi.org/10.1016/j.gca.2008.05.053 CrossRefGoogle Scholar
  78. Stoiber RE, Rose WI (1969) Recent volcanic and fumarolic activity at Santiaguito volcano, Guatemala. Bull Volcanol 33:475–502.  https://doi.org/10.1007/BF02596520 CrossRefGoogle Scholar
  79. Stoiber RE, Rose WI (1970) The geochemistry of central American volcanic gas condensates. GSA Bull 81:2891–2912. https://doi.org/10.1130/0016-7606(1970)81[2891:TGOCAV]2.0.CO;2CrossRefGoogle Scholar
  80. Stoiber RE, Rose WI (1974) Fumarole incrustations at active central American volcanoes. Geochim Cosmochim Acta 38:495–516.  https://doi.org/10.1016/0016-7037(74)90037-4 CrossRefGoogle Scholar
  81. Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi volcano, Indonesia. Geochim Cosmochim Acta 51:2083–2101.  https://doi.org/10.1016/0016-7037(87)90258-4 CrossRefGoogle Scholar
  82. Symonds RB, Reed MH, Rose WI (1992) Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes. Geochim Cosmochim Acta 56:633–657.  https://doi.org/10.1016/0016-7037(92)90087-Y CrossRefGoogle Scholar
  83. Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies: methods, results, and applications. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas. Reviews in Mineralogy, vol 30, pp 1–66 http://www.minsocam.org/MSA/RIM/Rim30.html Google Scholar
  84. Taide ST, Ingle NB, Omanwar SK (2015) Characterization and photoluminescence studies of Dy3+ doped Na2SO4 phosphor prepared by re-crystallization method. IOSR. J Appl Phys 7:27–32.  https://doi.org/10.9790/4861-07312732 CrossRefGoogle Scholar
  85. Taran Y, Zelenski M (2015) Systematics of water isotopic composition and chlorine content in arc-volcanic gases. Geol Soc Lond, Spec Publ 410(1):237–262.  https://doi.org/10.1144/SP410.5 CrossRefGoogle Scholar
  86. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Exp Suppl 101. Springer, Basel, pp 133–164.  https://doi.org/10.1007/978-3-7643-8340-4_6 CrossRefGoogle Scholar
  87. Torres PC, Silva LC, Mota Gomes A (1995) Geology and volcanology of the 1995 eruption on the Fogo island-Cape Verde archipelago (in Portuguese). In: Porto University (ed) Memórias do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências da Universidade do Porto, pp 1019–1023Google Scholar
  88. Torres PC, Madeira J, Silva LC, Silveira AB, Serralheiro A, Mota Gomes, A (1997) Geologic map of the historical eruptions of Fogo Island: review and update (in Portuguese). In: Réffega A et al (eds) A erupção vulcânica de 1995 na ilha do Fogo, Cabo Verde, IICT, Lisbon, Portugal, pp 119–132Google Scholar
  89. Toutain JP, Aloupogiannis P, Delorme H, Person A, Blanc P, Robaye G (1990) Vapor deposition of trace elements from degassed basaltic lava, piton de la Fournaise volcano, Reunion Island. J Volcanol Geotherm Res 40:257–268.  https://doi.org/10.1016/0377-0273(90)90124-X CrossRefGoogle Scholar
  90. Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85.  https://doi.org/10.1134/S0742046316020068 CrossRefGoogle Scholar
  91. Vidya YS, Lakshminarasappa BN (2013) Preparation, Characterization, and Luminescence Properties of Orthorhombic Sodium Sulphate. Phys Res Int 2013:641631, 7 pages.  https://doi.org/10.1155/2013/641631 CrossRefGoogle Scholar
  92. Vieira G, Pina P, Mora C, Fernandes R, Almeida P, Dumont S, Martins B, Candeias C, Oliveira C, Ramalho RS (2017) Very high-resolution aerophotogrametric survey of the 2014/2015 lava flow field of Fogo volcano (Cape Verde). Proceedings of the 5th International Conference on “Small Unmanned Aerial Systems for Environmental Research”, Vila Real, Portugal, pp 49–50Google Scholar
  93. Wahrenberger C, Seward TM, Dietrich V (2002) Volatile trace-element transport in high-temperature gases from Kudriavy volcano (Iturup, Kurile Islands, Russia). In: Hellmann R, Wood SA (eds) Water-rock interactions, ore deposits, and environmental geochemistry: a tribute to David A. Crera. Geochem Soc Spec Publ 7:307–327. https://ci.nii.ac.jp/naid/10018296233
  94. Williams SN, Self S (1983) The October 1902 Plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16:33–56.  https://doi.org/10.1016/0377-0273(83)90083-5 CrossRefGoogle Scholar
  95. Wu D, Sun S (2016) Speciation analysis of As, Sb and Se. Trends Env Anal Chem 11:9–22.  https://doi.org/10.1016/j.teac.2016.05.001 CrossRefGoogle Scholar
  96. Zelenski M, Taran Y (2011) Geochemistry of volcanic and hydrothermal gases of Mutnovsky volcano, Kamchatka: evidence for mantle, slab and atmosphere contributions to fluids of a typical arc volcano. Bull Volcanol 73:373–394.  https://doi.org/10.1007/s00445-011-0449-0 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Mineral Resources and Geophysics Research Unit, National Laboratory for Energy and Geology (LNEG)AmadoraPortugal
  2. 2.CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
  3. 3.Mineral Science and Technology Unit, National Laboratory for Energy and Geology (LNEG)S. Mamede de InfestaPortugal
  4. 4.GeoBioTec - Geobiosciences, Geotechnologies and Geoengineering Research Center, Geosciences DepartmentUniversity of AveiroAveiroPortugal
  5. 5.EpiUnit - Epidemiology Research Unit, Environmental Health Department, Institute of Public HealthUniversity of PortoPortoPortugal
  6. 6.SpLine, Spanish CRG Beamline, European Synchrotron Radiation Facility (ESRF)GrenobleFrance
  7. 7.Instituto de Ciencia de Materiales de Madrid-CSICMadridSpain
  8. 8.Geology, Hydrogeology and Coastal Geology Unit, National Laboratory for Energy and Geology (LNEG)AmadoraPortugal

Personalised recommendations