Advertisement

Bulletin of Volcanology

, 81:15 | Cite as

Paleomagnetic determination of the age and properties of the 1780–1800 AD dome effusion/collapse episode of Mt. Taranaki, New Zealand

  • Geoffrey A. LernerEmail author
  • Shane J. Cronin
  • Gillian M. Turner
  • Michael C. Rowe
Research Article

Abstract

Understanding the timing and nature of effusion of lava in the summit regions of stratovolcanoes is important, because these volcanoes generate deadly and destructive block-and-ash flows (BAFs). The most recent eruption of Mt. Taranaki in New Zealand left a portion of a lava dome which now forms its 2518 m summit. In this study we demonstrate the value of applying paleomagnetic techniques to understand recent effusive episodes. By matching the direction of remanent magnetization of the dome lava with the regional paleomagnetic secular variation curve NZPSV1k, we estimate that this eruption occurred between AD1780 and 1800. The paleomagnetic signal and geochemistry show that the summit dome was part of a large lava coulee that spilled from a NW-breach in the crater, with other parts of this structure still remaining down slope (the “Turtle”). Paleomagnetic analyses were also used to reconstruct the thermal history of deposits formed by the dome/coulee collapse. Emplacement temperature estimates and groundmass textural data from the BAF deposit clasts show that the lava dome collapsed in multiple stages. A small, cooler portion of lower dome coulee collapsed first, before the progressively thicker and hotter parts of the central dome. The collapses generated BAFs which travelled up to 5 km from the source and maintained temperatures > 500 °C more than 2 km from the source.

Keywords

Volcano Paleomagnetism Lava dome Pyroclastic flow Block-and-ash flow Taranaki 

Notes

Acknowledgements

The authors are extremely grateful to Elisa Piispa, Edgar Zorn, Jie Wu, Benjamin Simons, and Cristian Montanaro for assisting with multi-day sampling trips to Taranaki’s summit. The authors would like to thank Benjamin Andrews and an anonymous reviewer for constructive comments that helped improve the quality of the paper.

Funding information

GL would like to thank AINSE Ltd. for providing financial assistance (Award—PGRA) to enable work on this project and to the George Mason Charitable Trust for providing financial assistance towards fieldwork. SJC is supported by the Natural Hazards Research Platform Project “Quantifying exposure to specific and multiple volcanic hazards”.

References

  1. Alloway BV, Neall VE, Vucetich CG (1995) Late Quaternary (post 28,000 year B.P.) tephrostratigraphy of northeast and central Taranaki, New Zealand. J Roy Soc NZ 25:385–458.  https://doi.org/10.1080/03014223.1995.9517496 CrossRefGoogle Scholar
  2. Andreastuti S, Paripurno E, Gunawan H, Budianto A, Syahbana D, Pallister J (2017) Character of community response to volcanic crises at Sinabung and Kelud volcanoes. J Volcanol Geotherm Res.  https://doi.org/10.1016/j.jvolgeores.2017.01.022
  3. Aramaki S, Akimoto S-i (1957) Temperature estimation of pyroclastic deposits by natural remanent magnetism. Am J Sci 255:619–627CrossRefGoogle Scholar
  4. Bardot L, McClelland E (2000) The reliability of emplacement temperature estimates using paleomagnetic methods: a case study from Santorini, Greece. Geophys J Int 143:39–51.  https://doi.org/10.1046/j.1365-246x.2000.00186.x CrossRefGoogle Scholar
  5. Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. IAVCEI Proceedings In Volcanology, vol 2. Springer, Berlin, HeidelbergGoogle Scholar
  6. Cronin SJ (1991) The geology of the summit of Mt. Egmont. BSc Honours Thesis, Massey UniversityGoogle Scholar
  7. Cook J (1771) XLIV. Variation of the compass, as observed on board the Endeavour Bark, in a voyage round the world. Philos Trans 61:422–432.  https://doi.org/10.1098/rstl.1771.0045 CrossRefGoogle Scholar
  8. Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques 27:20–21Google Scholar
  9. Damaschke M, Cronin SJ, Bebbington MS (2018) A volcanic event forecasting model for multiple tephra records, demonstrated on Mt. Taranaki, New Zealand. Bull Volcanol 80(9).  https://doi.org/10.1007/s00445-017-1184-y
  10. Damaschke M, Cronin S, Holt K, Bebbington M, Hogg A (2017) A 30,000 yr high-precision eruption history for the andesitic Mt. Taranaki, North Island, New Zealand. Quat Res 87:1–23.  https://doi.org/10.1017/qua.2016.11 CrossRefGoogle Scholar
  11. di Chiara A, Speranza F, Porreca M, Pimentel A, D'Ajello Caracciolo F, Pacheco J (2014) Constraining chronology and time-space evolution of Holocene volcanic activity on the Capelo Peninsula (Faial Island, Azores): the paleomagnetic contribution. Geol Soc Am Bull 126:1164–1180.  https://doi.org/10.1130/B30933.1 CrossRefGoogle Scholar
  12. Druce AP (1966) Tree-ring dating of recent volcanic ash and lapilli, Mt Egmont. NZ J Bot 4:3–41.  https://doi.org/10.1080/0028825X.1966.10443951 CrossRefGoogle Scholar
  13. Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophys R 103:527–545.  https://doi.org/10.1029/97JB02838 CrossRefGoogle Scholar
  14. Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the Mount St Helens lava dome. Nature 348:435–437.  https://doi.org/10.1038/348435a0 CrossRefGoogle Scholar
  15. Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305.  https://doi.org/10.1098/rspa.1953.0064 CrossRefGoogle Scholar
  16. Gow AJ (1968) Petrographic and petrochemical studies of Mt Egmont andesites. NZ J Geol Geophys 11:166–190.  https://doi.org/10.1080/00288306.1968.10423683 CrossRefGoogle Scholar
  17. Heap MJ, Farquharson JI, Baud P, Lavallee Y, Reuschle T (2015) Fracture and compaction of andesite in a volcanic edifice. Bull Volcanol 77:55.  https://doi.org/10.1007/s00445-015-0938-7 CrossRefGoogle Scholar
  18. Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya Volcano. Bull Volcanol 71:541–558.  https://doi.org/10.1007/s00445-008-0241-y CrossRefGoogle Scholar
  19. Hoblitt RP, Kellogg KS (1979) Emplacement temperatures of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. Geol Soc Am Bull 90:633–642CrossRefGoogle Scholar
  20. Hon K, Kauahikaua J, Delinger R, MacKay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Bull Geol Soc Am 106:351–370.  https://doi.org/10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO CrossRefGoogle Scholar
  21. Hoshi H, Ishiwatari I (2004) Rock magnetism and paleomagnetism of a lava dome of Tomuro Volcano, Ishikawa Prefecture, Japan. J Geol Soc Jpn 110:536–544.  https://doi.org/10.5575/geosoc.110.536 CrossRefGoogle Scholar
  22. Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358:957–990.  https://doi.org/10.1098/rsta.2000.0569 CrossRefGoogle Scholar
  23. Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HR, Poldevaart A (eds) Basalts, vol 2. Interscience Publishers, New York, pp 503–536Google Scholar
  24. Jousset P, Pallister J, Surono (2013) The 2010 eruption of Merapi Volcano. J Volcanol Geotherm Res 261:1–6.  https://doi.org/10.1016/j.jvolgeores.2013.05.008 CrossRefGoogle Scholar
  25. Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116:151–160.  https://doi.org/10.1016/S0377-0273(02)00216-0 CrossRefGoogle Scholar
  26. Kennedy LA, Russell JK, Nelles E (2009) Origins of Mount St. Helens cataclasites: experimental insights. Am Mineral 94:995–1004.  https://doi.org/10.2138/am.2009.3129 CrossRefGoogle Scholar
  27. Kent DV, Ninkovich D, Pescatore T, Sparks RSJ (1981) Paleomagnetic determination of emplacement temperature of the Vesuvius AD 79 pyroclastic deposits. Nature 290:393–396CrossRefGoogle Scholar
  28. Korte M, Constable CG (2003) Continuous global geomagnetic field models for the past 3000 years. Phys Earth Planet Inter 140:73–89.  https://doi.org/10.1029/2004GC000801 CrossRefGoogle Scholar
  29. Korte M, Constable CG (2011) Improving geomagnetic field reconstructions for 0-3 ka. Phys Earth Planet Inter 188:247–259.  https://doi.org/10.1016/j.pepi.2011.06.017 CrossRefGoogle Scholar
  30. Libby WF (1955) Radiocarbon dating, 2nd edn. The University of Chicago Press, ChicagoGoogle Scholar
  31. Mei ETW, Lavigne F, Picquout A, de Bélizal E, Brunstein D, Grancher D, Sartohadi J, Cholik N, Vidal C (2013) Lessons learned from the 2010 evacuations at Merapi Volcano. J Volcanol Geotherm Res 261:348–365.  https://doi.org/10.1016/j.jvolgeores.2013.03.010 CrossRefGoogle Scholar
  32. Merrill RT, McElhinny MW, McFadden PL (1996) The magnetic field of the earth, Academic PressGoogle Scholar
  33. Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geotherm Res 89:1–22.  https://doi.org/10.1016/S0377-0273(98)00118-8 CrossRefGoogle Scholar
  34. Nakada S, Myake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen Volcano (Japan). Geology 23:157–160.  https://doi.org/10.1130/0091-7613(1995)023<0157:EGODDA>2.3.CO;2 CrossRefGoogle Scholar
  35. Neall VE (1971) Volcanic domes and lineations in Egmont National Park: N.Z. J Geol Geophys 14:71–81.  https://doi.org/10.1080/00288306.1971.10422461 CrossRefGoogle Scholar
  36. Neall VE (1979) Sheets P19, P20, & P21 New Plymouth, Egmont, and Manaia: N.Z. Department of Scientific and Industrial ResearchGoogle Scholar
  37. Neall VE, Stewart RB, Smith IEM (1986) History and petrology of the Taranaki volcanoes, In: Smith IEM., ed., Late Cenozoic volcanism in New Zealand. Wellington, New Zealand, Roy Soc NZ, p. 251–263Google Scholar
  38. Noël M, Batt CM (1990) A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophys J Int 102:753–756.  https://doi.org/10.1111/j.1365-246X.1990.tb04594.x CrossRefGoogle Scholar
  39. Paterson GA, Roberts AP, Mac Niocaill C, Muxworthy AR, Gurioli L, Viramonté JG, Navarro C, Weider S (2010) Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an under-utilized tool. Bull Volcanol 72:309–330.  https://doi.org/10.1007/s00445-009-0324-4 CrossRefGoogle Scholar
  40. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109.  https://doi.org/10.1016/j.epsl.2013.11.046 CrossRefGoogle Scholar
  41. Pavón-Carrasco FJ, Osete ML, Torta JM (2009) A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating. Geochem Geophys Geosyst 10:Q03013.  https://doi.org/10.1029/2008GC002244 CrossRefGoogle Scholar
  42. Pavón-Carrasco FJ, Rodríguez-González J, Osete ML, Torta JM (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38:408–419.  https://doi.org/10.1016/j.jas.2010.09.021 CrossRefGoogle Scholar
  43. Pensa A, Capra L, Giordano G, Corrado S (2018) Emplacement temperature estimation of the 2015 dome collapse of Volcán de Colima as key proxy for flow dynamics of confined and unconfined pyroclastic density currents. J Volcanol Geotherm Res 357:321–338.  https://doi.org/10.1016/j.jvolgeores.2018.05.010 CrossRefGoogle Scholar
  44. Platz T (2007) Understanding aspects of andesitic dome-forming eruptions through the last 1000 yrs of volcanism at Mt. Taranaki, New Zealand, PhD Thesis, Massey UniversityGoogle Scholar
  45. Platz T, Cronin SJ, Cashman KV, Stewart RB, Smith IEM (2007) Transition from effusive to explosive phases in andesite eruptions—a case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geotherm Res 161:15–34.  https://doi.org/10.1016/j.jvolgeores.2006.11.005 CrossRefGoogle Scholar
  46. Platz T, Cronin SJ, Procter JN, Neall VE, Foley SF (2012) Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorph 136:15–30.  https://doi.org/10.1016/j.geomorph.2011.06.016 CrossRefGoogle Scholar
  47. Price RC, McCulloch MT, Smith IEM, Stewart RB (1992) Pb–Nd–Sr isotopic compositions and trace element characteristics of young volcanic rocks from Egmont Volcano and comparisons with basalts and andesites from the Taupo Volcanic Zone, New Zealand. Geochim Cosmochim 56:941–953.  https://doi.org/10.1016/0016-7037(92)90038-K CrossRefGoogle Scholar
  48. Procter JN, Cronin SJ, Platz T, Patra A, Dalbey K, Sheridan M, Neall V (2010) Mapping block-and-ash flow hazards based on Titan2D simulations; a case study from Mt. Taranaki, NZ. Nat Hazards 53:483–501.  https://doi.org/10.1007/s11069-009-9440-x CrossRefGoogle Scholar
  49. Ratdomopurbo A, Beauducel F, Subandriyo J, Agung Nandaka IGM, Newhall CG, Suharna SDS, Suparwaka H, Sunarta (2013) Overview of the 2006 eruption of Mt. Merapi. J Volcanol Geotherm Res 261:87–97.  https://doi.org/10.1016/j.jvolgeores.2013.03.019 CrossRefGoogle Scholar
  50. Rowe MC, Ellis BS, Lindeberg A (2012) Quantifying crystallization and devitrification of rhyolites bymeans of X-ray diffraction and electron microprobe analysis. Am Mineral 97:1685–1699.  https://doi.org/10.2138/am.2012.4006 CrossRefGoogle Scholar
  51. Rutten MG (1960) Paleomagnetic dating of younger volcanic series. Geol Rundsch 49:161–167.  https://doi.org/10.1007/BF01802403 CrossRefGoogle Scholar
  52. Rose WI Jr, Pearson T, Donis S (1977) Nueée ardente, eruption from the foot of a dacite lava flow, Santiaguito Volcano, Guatemala. Bull Volcanol 40:1–16Google Scholar
  53. Schön JH (2015) Physical properties of rocks. 2nd edition. ElsevierGoogle Scholar
  54. Speranza F, Branca S, Coltelli M, D'Ajello Caracciolo F, Vigliotti L (2006) How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna. J Geophys Res 111:B12S33.  https://doi.org/10.1029/2006JB004496 CrossRefGoogle Scholar
  55. Speranza F, Landi P, D’Ajello Caracciolo F, Pignatelli A (2010) Paleomagnetic dating of the most recent silicic eruptive activityat Pantelleria (Strait of Sicily). Bull Volcanol 72:847–858.  https://doi.org/10.1007/s00445-010-0368-5 CrossRefGoogle Scholar
  56. Stewart RB, Price RC, Smith IEM (1996) Evolution of high-K arc magma, Egmont Volcano, Taranaki, New Zealand: evidence from mineral chemistry. J Volcanol Geotherm Res 74:275–295.  https://doi.org/10.1016/S0377-0273(96)00049-2 CrossRefGoogle Scholar
  57. Thompson R, Turner GM (1979) A British geomagnetic master curve 10000-0 BP for dating European sediments. Geophys Res Lett 6:249–252.  https://doi.org/10.1029/GL006i004p00249 CrossRefGoogle Scholar
  58. Topping WW (1974) A 1480 A.D. Maori oven from Mount Egmont, New Zealand. NZ J Sci 17:119–122Google Scholar
  59. Torres-Orozco R, Cronin SJ, Pardo N, Palmer AS (2017) New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont), New Zealand. Bull Volcanol 79:3.  https://doi.org/10.1007/s00445-016-1085-5 CrossRefGoogle Scholar
  60. Torres-Orozco R, Cronin SJ, Pardo N, Palmer AS (2018) Volcanic hazard scenarios for multiphase andesitic Plinian eruptions from lithostratigraphy: insights into pyroclastic density current diversity at Mount Taranaki, New Zealand. GSA Bull 130:1645–1663.  https://doi.org/10.1130/B31850.1 CrossRefGoogle Scholar
  61. Turner GM, Alloway BV, Dixon BJ, Atkins CB (2018) Thermal history of volcanic debris flow deposits on the eastern flanks of Mt. Taranaki, New Zealand: implications for future hazards. J Volcanol Geotherm Res 353:55–67.  https://doi.org/10.1016/j.jvolgeores.2018.01.017 CrossRefGoogle Scholar
  62. Turner GM, Howarth JD, de Gelder GINO, Fitzsimons SJ (2015) A new high-resolution record of Holocene geomagnetic secular variation from New Zealand. Earth Planet Sci Lett 430:296–307.  https://doi.org/10.1016/j.epsl.2015.08.021 CrossRefGoogle Scholar
  63. Turner GM, Lillis DA (1994) A paleomagnetic secular variation record from New Zealand during the past 2500 years. Phys Earth Planet Inter 83:265–282.  https://doi.org/10.1016/0031-9201(94)90093-0 CrossRefGoogle Scholar
  64. Turner MB, Cronin SJ, Smith IE, Stewart RB, Neall VE (2008) Eruption episodes and magma recharge events in andesitic systems; Mt. Taranaki, New Zealand: Journal of Volcanology and Geothermal Research, 177:1063-1076.  https://doi.org/10.1016/j.jvolgeores.2008.08.001
  65. Turner MB, Cronin SJ, Bebbington MS, Smith IEM, Stewart RB (2011) Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quat Int 246:364–373.  https://doi.org/10.1016/j.quaint.2011.07.006 CrossRefGoogle Scholar
  66. Uehara D, Cas RAF, Folkes C, Takarada S, Oda H, Porreca M (2015) Using thermal remanent magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991–1995 lava dome eruption at Mt. Unzen Volcano, Japan. J Volcanol Geotherm Res 303:92–111.  https://doi.org/10.1016/j.jvolgeores.2015.07.019 CrossRefGoogle Scholar
  67. Urrutia-Fucugauchi J, Alva-Valdivia LM, Goguitchaichvili A, Rivas ML, Morales J (2004) Palaeomagnetic, rock-magnetic and microscopy studies of historic lava flows from the Paricutin Volcano, Mexico: implications for the deflection of palaeomagnetic directions. Geophys J Int 156:431–442.  https://doi.org/10.1111/j.1365-246X.2004.02166.x CrossRefGoogle Scholar
  68. Voight B (2000) Structural stability of andesite volcanoes and lava domes. Phil Trans Roy Soc Lond A 358:1663–1703.  https://doi.org/10.1098/rsta.2000.0609 CrossRefGoogle Scholar
  69. Wall KT, Rowe MC, Ellis BS, Schmidt ME, Eccles JD (2014) Determining volcanic eruption styles on Earth and Mars from crystallinity measurements. Nat Commun 5(5090).  https://doi.org/10.1038/ncomms6090
  70. Walter TR, Wang R, Zimmer M, Grosser H, Lühr B, Ratdomopurbo A (2007) Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys Res Lett 34:L05304.  https://doi.org/10.1029/2006GL028710 CrossRefGoogle Scholar
  71. Watson GS (1956) A test for randomness of directions. Geophys J Int 7:160–161.  https://doi.org/10.1111/j.1365-246X.1956.tb05561.x CrossRefGoogle Scholar
  72. Wong TF, Baud P (2012) The brittle-ductile transition in porous rock: a review. J Struct Geol 44:22–53.  https://doi.org/10.1016/j.jsg.2012.07.010 CrossRefGoogle Scholar
  73. Zernack AV, Cronin SJ, Bebbington MS, Price RC, Smith IEM, Stewart RB, Procter JN (2012) Forecasting catastrophic stratovolcano collapse: a model based on Mount Taranaki, New Zealand. Geology 40:983–986.  https://doi.org/10.1130/G33277.1 CrossRefGoogle Scholar
  74. Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, AmsterdamGoogle Scholar
  75. Zorn EU, Rowe MC, Cronin SJ, Ryan AG, Kennedy LA, Russell JK (2018) Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand. Bull Volcanol 80:35.  https://doi.org/10.1007/s00445-018-1210-8 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  2. 2.School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations