Bulletin of Volcanology

, 81:2 | Cite as

Variations in CO2 emissions at a mud volcano at the southern base of Mt Etna: are they due to volcanic activity interference or a geyser-like mechanism?

  • Cinzia FedericoEmail author
  • Marco Liuzzo
  • Gaetano Giudice
  • Giorgio Capasso
  • Antonino Pisciotta
  • Maria Pedone
Research Article


Mud volcanoes are often associated with large areas of CO2 and CH4 emission that are potentially dangerous due to sudden paroxysmal gas and mud eruptions. Despite the interest in understanding such natural environments, they have not yet been thoroughly investigated and a single interpretative framework remains to be elaborated. This lack of knowledge may be due to the difficulty in measuring in-plume CO2 as there is very little contrast with atmospheric CO2, coupled with the complex organizational strategies required for long-term monitoring. This work features three different methods that were used to evaluate the CO2 flux at the Salinelle mud volcano in the foothills of Mt Etna (Italy), carried out periodically from December 2013 to April 2018. We computed in-plume CO2 flux indirectly using a tunable laser and a portable MultiGAS and, directly, measuring the gas volumetric flux from bubbling pools. The morphological variations of the mud field were recorded using unmanned aerial vehicle (UAV) imagery, which provided information on the migration of vents in relation to the observed variations in measured gas output. Our analysis shows that the three methods gave comparable values, indicating the feasibility of this approach. Our findings suggest a pseudo-cyclical pattern in the bulk CO2 emitted at Salinelle, introducing a new interpretation of the processes involved in mud volcano dynamics. We theorize that the periodic variation of the gas emitted at the Salinelle may be attributed to a “geyser-like” mechanism that may be subject to interruption or changes in magnitude by volcanic or seismic events.


Mud volcano Gas emission Mt Etna 



The Authors wish to thank the colleagues Giuseppe Riccobono, Paolo Cosenza, Vincenzo Francofonte, and Andrea Mastrolia for the experimental and field support during some initial campaigns.

Funding information

The work has been partially funded by the project DPC-INGV-V3 project 2012 Multi-disciplinary analysis of the relationships between tectonic structures and volcanic activity.

Supplementary material (278 mb)
ESM 1 (ZIP 284668 kb)


  1. Aiuppa A, Allard P, D’Alessandro W, Giammanco S, Parello F, Valenza M (2004) Magmatic gas leakage at Mount Etna (Sicily, Italy): relationships with the volcano-tectonic structures, the hydrological pattern and the eruptive activity. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mt. Etna: volcano laboratory. American Geophysical Union, Washington, DC, pp 129–145. CrossRefGoogle Scholar
  2. Aiuppa A, Federico C, Giudice G, Gurrieri S, Liuzzo M, Shinohara H, ... & Valenza M (2006a). Rates of carbon dioxide plume degassing from Mount Etna volcano. J Geophysic Res: Solid Earth, 111(B9).Google Scholar
  3. Aiuppa A, Federico C, Giudice G, Gurrieri S, & Valenza M (2006b). Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: evidence from La Fossa crater fumarolic field, Vulcano Island. Geophys Res Lett, 33(21).Google Scholar
  4. Aiuppa A, Cannata A, Cannavò F, Di Grazia G, Ferrari F, Giudice G, ... & Patanè, D (2010). Patterns in the recent 2007–2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations. Geochem Geophys Geosyst, 11(9).Google Scholar
  5. Aiuppa A, Fiorani L, Santoro S, Parracino S, Nuvoli M, Chiodini G, ... & Tamburello G (2015). New ground-based lidar enables volcanic CO2 flux measurements. Sci Rep, 5, 13614.Google Scholar
  6. Allard, P., Carbonnelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M. C., ... & Zettwoog, P. (1991). Eruptive and diffuse emissions of CO2 from Mount Etna. Nature, 351(6325), 387.Google Scholar
  7. Allard P, Jean-Baptiste P, D’Alessandro W, Parello F, Parisi B, Flehoc C (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna. Italy Earth and Planetary Science Letters 148(3–4):501–516CrossRefGoogle Scholar
  8. Amici S, Turci M, Giammanco S, Spampinato L, Giulietti F (2013) UAV thermal infrared remote sensing of an Italian mud volcano. Adv Remote Sens 2(4):358–364. CrossRefGoogle Scholar
  9. Bonini M (2009) Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily. Italy Tectonophysics 474(3–4):723–735CrossRefGoogle Scholar
  10. Burton MR, Oppenheimer C, Horrocks LA, Francis PW (2000) Remote sensing of CO2 and H2O emission rates from Masaya Volcano. Nicaragua Geol 28:915–918CrossRefGoogle Scholar
  11. Cannata, A., Di Grazia, G., Giuffrida, M., Gresta, S., Palano, M., Sciotto, M., ... & Zuccarello, F. (2018). Space-time evolution of magma storage and transfer at Mt. Etna volcano (Italy): the 2015–2016 reawakening of Voragine crater. Geochem Geophys Geosyst, 19(2), 471–495.Google Scholar
  12. Caracausi A, Italiano F, Paonita A, Rizzo A, & Nuccio PM (2003). Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mount Etna (Italy): assessment of the magmatic reservoir pressure. J Geophysic Res: Solid Earth, 108(B10)Google Scholar
  13. Castaldini D, Coratza P (2017) Mud volcanoes in the Emilia-Romagna Apennines: small landforms of outstanding scenic and scientific value. In: In Landscapes and landforms of Italy. Springer, Cham, pp 225–234CrossRefGoogle Scholar
  14. Chiodini G, D’Alessandro W, Parello F (1996) Geochemistry of gases and waters discharged by the mud volcanoes at Paternò, Mt. Etna (Italy). Bull Volcanol 58(1):51–58CrossRefGoogle Scholar
  15. Cioncolini A, Thome JR (2012) Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow. Nucl Eng Des 243:200–213CrossRefGoogle Scholar
  16. Collignon M, Schmid DW, Galerne C, Lupi M, Mazzini A (2017) Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption. Mar Pet Geol 90:173–190CrossRefGoogle Scholar
  17. Corsaro RA, Andronico D, Behncke B, Branca S, Caltabiano T, Ciancitto F et al (2017) Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): implications on eruptive dynamics. J Volcanol Geotherm Res 341:53–69CrossRefGoogle Scholar
  18. Cumin G (1954) Le Salinelle di Paternò e la loro attuale attività. Boll Natl Acad Gioenia Sci Catania 4(2):9Google Scholar
  19. Davies RJ, Brumm M, Manga M, Rubiandini R, Swarbrick R, Tingay M (2008) The East Java mud volcano (2006 to present): an earthquake or drilling trigger? Earth Planet Sci Lett 272(3–4):627–638CrossRefGoogle Scholar
  20. De Beni E, Behncke B, Branca S, Nicolosi I, Carluccio R, Caracciolo FA, Chiappini M (2015) The continuing story of Etna’s New Southeast Crater (2012–2014): evolution and volume calculations based on field surveys and aerophotogrammetry. J Volcanol Geotherm Res 303:175–186CrossRefGoogle Scholar
  21. Del Bello, E., Llewellin, E. W., Taddeucci, J., Scarlato, P., & Lane, S. J. (2012). An analytical model for gas overpressure in slug-driven explosions: insights into Strombolian volcanic eruptions. J Geophysic Res: Solid Earth, 117(B2).Google Scholar
  22. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271CrossRefGoogle Scholar
  23. Ernst GGJ, Kervyn M, Teeuw RM (2008) Advances in the remote sensing of volcanic activity and hazards, with special consideration to applications in developing countries. Int J Remote Sens 29(22):6687–6723. CrossRefGoogle Scholar
  24. Ferlito C, Bruno V, Salerno G, Caltabiano T, Scandura D, Mattia M, Coltorti M (2017) Dome-like behaviour at Mt. Etna: the case of the 28 December 2014 South East Crater paroxysm. Sci Rep 7(1):5361CrossRefGoogle Scholar
  25. Fernández E, Martí R (1999) GRASP for seam drawing in mosaicking of aerial photographic maps. J Heuristics 5:181–197CrossRefGoogle Scholar
  26. Fowler SR, Mildenhall J, Zalova S, Riley G, Elsley G, Desplanques A, Guliyev F (2000) Mud volcanoes and structural development on Shah Deniz. J Pet Sci Eng 28(4):189–206CrossRefGoogle Scholar
  27. Gambino, S., Cannata, A., Cannavò, F., La Spina, A., Palano, M., Sciotto, M., ... & Barberi, G. (2016). The unusual 28 December 2014 dike-fed paroxysm at Mount Etna: timing and mechanism from a multidisciplinary perspective. J Geophysic Res: Solid Earth, 121(3), 2037–2053Google Scholar
  28. Giammanco S, Parello F, Gambardella B, Schifano R, Pizzullo S, Galante G (2007) Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt. Etna (Italy). J Volcanol Geotherm Res 165(1–2):46–63CrossRefGoogle Scholar
  29. Graue K (2000) Mud volcanoes in deepwater Nigeria. Mar Pet Geol 17(8):959–974CrossRefGoogle Scholar
  30. Gomez C, Purdie H (2016) UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring–a review. Geoenviron Dis 3(1):23CrossRefGoogle Scholar
  31. Guliev IS (1992). A review of mud volcanism. Azerbaijan Academy of Sciences Institute of GeologyGoogle Scholar
  32. Kerschner M (2001) Seam-line detection in colour orthoimage mosaicking by use of twin snakes. ISPRS J Photogramm Remote Sens 56(1):53–64CrossRefGoogle Scholar
  33. Huo Q, & Cai X (2014). Lagrangian stochastic simulation of atmospheric dispersion from sources near the ground. Terr Atmos Ocean Sci, 25(1)Google Scholar
  34. James MR, Lane SJ, Wilson L, Corder SB (2009) Degassing at low magma-viscosity volcanoes: quantifying the transition between passive bubble-burst and Strombolian eruption. J Volcanol Geotherm Res 180(2–4):81–88CrossRefGoogle Scholar
  35. Ladd BS, Ryan MC (2016) Can CO2 trigger a thermal geyser eruption? Geology 44(4):307–310CrossRefGoogle Scholar
  36. La Spina A, Burton M, Allard P, Alparone S, Muré F (2015) Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna. Earth Planet Sci Lett 413:123–134CrossRefGoogle Scholar
  37. Lu X, Watson A, Gorin AV, Deans J (2005) Measurements in a low temperature CO2-driven geysering well, viewed in relation to natural geysers. Geothermics 34(4):389–410CrossRefGoogle Scholar
  38. Manga M (2007) Did an earthquake trigger the May 2006 eruption of the Lusi mud volcano? EOS Trans Am Geophys Union 88(18):201–201CrossRefGoogle Scholar
  39. Mazzini A, Svensen H, Akhmanov GG, Aloisi G, Planke S, Malthe-Sørenssen A, Istadi B (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet Sci Lett 261(3–4):375–388CrossRefGoogle Scholar
  40. Mazzini A, Etiope G (2017) Mud volcanism: an updated review. Earth Sci Rev 168:81–112CrossRefGoogle Scholar
  41. McGonigle AJS, Oppenheimer C (2003) Optical sensing of volcanic gas and aerosol emissions. Geol Soc Lond, Spec Publ 213:149–168. CrossRefGoogle Scholar
  42. Mellors R, Kilb D, Aliyev A, Gasanov A, & Yetirmishli G (2007). Correlations between earthquakes and large mud volcano eruptions. J Geogr Res: Solid Earth, 112(B4)Google Scholar
  43. Mori T, Hashimoto T, Terada A, Yoshimoto M, Kazahaya R, Shinohara H, Tanaka R (2016) Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption. Earth Planets and Space 68(1):49CrossRefGoogle Scholar
  44. Munoz-Saez C, Manga M, Hurwitz S, Rudolph ML, Namiki A, Wang CY (2015) Dynamics within geyser conduits, and sensitivity to environmental perturbations: insights from a periodic geyser in the El Tatio geyser field, Atacama Desert, Chile. J Volcanol Geotherm Res 292:41–55CrossRefGoogle Scholar
  45. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geotherm Res 177(3):743–754.
  46. Oppenheimer C (2010) Ultraviolet sensing of volcanic sulfur emissions. Elements 6(2):87–92CrossRefGoogle Scholar
  47. Oppenheimer C, Francis P, Burton M et al (1998) Remote measurement of volcanic gases by Fourier transform infrared spectroscopy. Appl Phys B Lasers Opt 67:505. CrossRefGoogle Scholar
  48. Pagan E, Williams WC, Kam S, Waltrich PJ (2017) A simplified model for churn and annular flow regimes in small-and large-diameter pipes. Chem Eng Sci 162:309–321CrossRefGoogle Scholar
  49. Paonita A, Caracausi A, Iacono-Marziano G, Martelli M, Rizzo A (2012) Geochemical evidence for mixing between fluids exsolved at different depths in the magmatic system of Mt Etna (Italy). Geochim Cosmochim Acta 84:380–394CrossRefGoogle Scholar
  50. Panzera F, Sicali S, Lombardo G, Imposa S, Gresta S, D’Amico S (2016) A microtremor survey to define the subsoil structure in a mud volcanoes area: the case study of Salinelle (Mt. Etna, Italy). Environ Earth Sci 75(15):1140CrossRefGoogle Scholar
  51. Pedone M, Aiuppa A, Giudice G, Grassa F, Cardellini C, Chiodini G, & Valenza M (2014). Volcanic CO2 measurements at Campi Flegrei by infrared tunable diode laser absorption spectroscopy. Bull Volcanol doi
  52. Pedone M, Granieri D, Moretti R, Fedele A, Troise C, Somma R, De Natale G (2017) Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian stochastic and Eulerian dispersion modelling. Atmos Environ 170:1–11CrossRefGoogle Scholar
  53. Pickering PF, Hewitt GF, Watson MJ, & Hale CP (2001). The prediction of flows in production risers-truth & myth. In IIR Conference (Vol. 10). AberdeenGoogle Scholar
  54. Pieri D, Diaz JA, Bland G, Fladeland M, Madrigal Y, Corrales E, ... & Abtahi A (2013). In situ observations and sampling of volcanic emissions with NASA and UCR unmanned aircraft, including a case study at Turrialba Volcano, Costa Rica. Geol Soc Lond, Spec Publ, 380, SP380–13.Google Scholar
  55. Pioli L, Bonadonna C, Azzopardi BJ, Phillips JC, & Ripepe M (2012). Experimental constraints on the outgassing dynamics of basaltic magmas. J Geophysic Res: Solid Earth, 117(B3)Google Scholar
  56. Queißer M, Burton MR, Arzilli F, Chiarugi A, Indah Marliyani G, Anggara F, & Harijoko A (2017). CO2 flux from Javanese mud volcanism. J Geophysic Res: Solid EarthGoogle Scholar
  57. Silvestri O (1879) Eruzione di fango presso l’Etna. Bull Vulcan Italy 6(1–3):28–31Google Scholar
  58. Stoiber RE, Jepsen A (1973) Sulfur dioxide contribution to the atmosphere by volcanoes. Science 182:577–578CrossRefGoogle Scholar
  59. Storkaas E, Skogestad S (2007) Controllability analysis of two-phase pipeline-riser systems at riser slugging conditions. Control Eng Pract 15(5):567–581CrossRefGoogle Scholar
  60. Taha T, Cui ZF (2006) CFD modelling of slug flow in vertical tubes. Chem Eng Sci 61(2):676–687CrossRefGoogle Scholar
  61. Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AICHE J 26(3):345–354CrossRefGoogle Scholar
  62. Vanderkluysen L, Burton MR, Clarke AB, Hartnett HE, Smekens JF (2014) Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia). Geochem Geophys Geosyst 15(7):2932–2946CrossRefGoogle Scholar
  63. Vergniolle S, Jaupart C (1986) Separated two-phase flow and basaltic eruptions. J Geophys Res Solid Earth 91(B12):12842–12860CrossRefGoogle Scholar
  64. Viccaro M, Garozzo I, Cannata A, Di Grazia G, Gresta S (2014) Gas burst vs. gas-rich magma recharge: a multidisciplinary study to reveal factors controlling triggering of the recent paroxysmal eruptions at Mt. Etna. J Volcanol Geotherm Res 278:1–13CrossRefGoogle Scholar
  65. Watson ZT, Han WS, Keating EH, Jung NH, Lu M (2014) Eruption dynamics of CO2-driven cold-water geysers: Crystal, Tenmile geysers in Utah and Chimayó geyser in New Mexico. Earth Planet Sci Lett 408:272–284CrossRefGoogle Scholar
  66. Zheng M, Xiong X, Zhu J (2018) A novel orthoimage mosaic method using a weighted algorithm – implementation and evaluation. ISPRS J Photogramm Remote Sens 138:30–46CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2018

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e Vulcanologia – sezione di PalermoPalermoItaly
  2. 2.Agenzia Spaziale ItalianaRomeItaly

Personalised recommendations