Advertisement

Bulletin of Volcanology

, 80:83 | Cite as

Dynamics of shallow hydrothermal eruptions: new insights from Vulcano’s Breccia di Commenda eruption

  • Mauro Rosi
  • Federico Di TragliaEmail author
  • Marco Pistolesi
  • Tomaso Esposti Ongaro
  • Mattia de’ Michieli Vitturi
  • Costanza Bonadonna
Research Article

Abstract

Understanding the dynamics and effects of hydrothermal eruptions is crucial to the hazard assessment in both volcanic and geothermal areas. Eruptions from hydrothermal centres may occur associated with magmatic phases, but also as isolated events without magmatic input, with the most recent examples being those of Te Maari (Tongariro, New Zealand) in 2012 and Ontake (Japan) in 2014. The most recent caldera of the Island of Vulcano (southern Italy) hosts in its centre the La Fossa cone, active since 5.5 ka and now characterised by continuous fumarolic degassing. In historical times, La Fossa cone has experienced several hydrothermal eruptions, with the most violent event being the Breccia di Commenda eruption that occurred during the thirteenth century ad. Based on analysis of 170 stratigraphic logs, we show that the Breccia di Commenda eruption occurred in three main phases. After an opening, low-intensity ash emission phase (phase 1), the eruption energy climaxed during phase 2, when a series of violent explosions produced an asymmetric shower of ballistic blocks and the contemporaneous emplacement of highly dispersed, lithic-rich, blast-like pyroclastic density currents (PDCs). The tephra units emplaced during phase 2, ranging in volume from 0.2 to 2.7 × 105 m3, were covered in turn by thin ash fall deposits (phase 3). The dynamics of the most violent and intense stage of the eruption (phase 2) was investigated by numerical simulations. A three-dimensional numerical model was applied, describing the eruptive mixture as a Eulerian–Eulerian, two-phase, non-equilibrium gas-particle fluid (plus a one-way coupled Lagrangian ballistic block fraction). At the initial simulation time, a mass of about 109 kg, with initial overpressure above 10 MPa, and a temperature of 250 °C, was suddenly ejected from a 200-m-long, eastward inclined, NNE–SSW trending fissure. The mass release formed blast-like PDCs on both sides of the fissure and launched ballistic blocks eastwards. Field investigations and numerical simulations confirm that hydrothermal explosions at La Fossa cone include intense ballistic fallout of blocks, emission of PDCs potentially travelling beyond the La Fossa caldera and significant ash fallout. The hazard associated with both ballistic impact and PDC ingress, as associated with hydrothermal eruption, is significantly larger with respect to that associated with Vulcanian-type events of La Fossa.

Keywords

Hydrothermal eruption dynamics Pyroclastic density currents hazard Volcano ballistic hazard 3D numerical modelling Island of Vulcano 

Notes

Acknowledgments

C. Bonadonna was supported by the Swiss National Science Foundation (subside no. 200021-129997). The authors are grateful to R. Fusillo (Univ. Bristol) for assistance during the fieldwork. F. di Traglia was supported by a post-doctoral fellowship founded by the ‘Università degli Studi di Firenze—Ente Cassa di Risparmio di Firenze’ (D.R. n. 127804 (1206), 2015). The authors are grateful to the ‘INGV-Sezione di Palermo’ staff, especially to P. Madonia, for the logistic support at the ‘M. Carapezza’ Volcanological Observatory (Island of Vulcano) during field activities. L. Gurioli and C. Montanaro are acknowledged for their careful and constructive reviews which greatly enhanced the quality of the manuscript, and Pierre-Simon Ross for editorial handling.

Supplementary material

445_2018_1252_MOESM1_ESM.docx (6.3 mb)
ESM 1 (DOCX 6422 kb)
445_2018_1252_MOESM2_ESM.png (0 kb)
ESM 2 (PNG 154 bytes)
ESM 3

(MP4 3460 kb)

References

  1. Albert PG, Tomlinson EL, Smith VC, Di Traglia F, Pistolesi M, Morris A, Donato P, De Rosa R, Sulpizio R, Keller J, Rosi M (2017) Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: a proximal database for tephrochronology. J Volcanol Geotherm Res 336:81–107Google Scholar
  2. Arrighi S, Tanguy JC, Rosi M (2006) Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by high-accuracy archeomagnetism. Phys Earth Planet Int 159:225–233Google Scholar
  3. Barde-Cabusson S, Finizola A, Revil A, Ricci T, Piscitelli S, Rizzo E, Angeletti B, Balasco M, Bennati L, Byrdina S, Carzaniga N, Crespy A, Di Gangi F, Morin J, Perrone A, Rossi M, Roulleau E, Suski B, Villeneuve N (2009) New geological insights and structural control on fluid circulation in La Fossa cone (Vulcano, Aeolian Islands, Italy). Journal of volcanology and Geothermal Research, 185(3):231–245Google Scholar
  4. Barberi F, Bertagnini A, Landi P, Principe C (1992) A review on phreatic eruptions and their precursors. J Volcanol Geotherm Res 52:231–246Google Scholar
  5. Belousov A (1996) Deposits of the 30 march 1956 directed blast at Bezymianny volcano, Kamchatka, Russia. Bull Volcanol 57(8):649–662Google Scholar
  6. Belousov A, Voight B, Belousova M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69:701Google Scholar
  7. Bescoby D, Barclay J, Andrews J (2008) Saints and sinners: a tephrochronology for late antique landscape change in Epirus from the eruptive history of Lipari, Aeolian Islands. J Archeol Sci 35:2574–2579Google Scholar
  8. Biass S, Bonadonna C, Di Traglia F, Pistolesi M, Rosi M, Lestuzzi P (2016a) Probabilistic evaluation of the physical impact of future tephra fallout events for the island of Vulcano, Italy. Bull Volcanol 78:1–22Google Scholar
  9. Biass S, Falcone JL, Bonadonna C, Di Traglia F, Pistolesi M, Rosi M, Lestuzzi P (2016b) Great balls of fire: a probabilistic approach to quantify the hazard related to ballistics—a case study at La Fossa volcano, Vulcano Island, Italy. J Volcanol Geotherm Res 325:1–14Google Scholar
  10. Biggs J, Robertson E, Cashman K (2016) The lateral extent of volcanic interactions during unrest and eruption. Nat Geosci 9(4):308Google Scholar
  11. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418Google Scholar
  12. Boudon G, Lajoie J (1989) The 1902 Peléean deposits in the fort cemetery of St. Pierre, Martinique: a model for the accumulation of turbulent nuees ardentes. In: G Boudon and A Gourgaud (Editors), Mount Pelée J Volcanol Geotherm Res 38:113–130Google Scholar
  13. Breard ECP, Lube G, Cronin SJ, Fitzgerald R, Kennedy B, Scheu B, Montanaro C, White JDL, Tost M, Procter JN, Moebis A (2014) Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: august 6 2012 upper Te Maari eruption, New Zealand. J Volcanol Geotherm Res 286:373–386Google Scholar
  14. Breard ECP, Lube G, Cronin SJ, Valentine GA (2015) Transport and deposition processes of the hydrothermal blast of the 6 august 2012 Te Maari eruption, Mt. Tongariro. Bull Volcanol 77:100Google Scholar
  15. Brissette FP, Lajoie J (1990) Depositional mechanics of turbulent nuees ardentes (surges) from their grain sizes. Bull Volcanol 53:60–66Google Scholar
  16. Browne P, Lawless J (2001) Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci Rev 52:299–331Google Scholar
  17. Bullock LA, Gertisser R, O’driscoll B (2018) Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands). Bull Volcanol 80(5):48Google Scholar
  18. Burns FA, Bonadonna C, Pioli L, Cole PD, Stinton A (2017) Ash aggregation during the 11 February 2010 partial dome collapse of the Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 335:92–112Google Scholar
  19. Calvache VML, Williams SN (1992) Lithic-dominated pyroclastic flows at Galeras volcano, Colombia—an unrecognised volcanic hazard. Geology 20:539–542Google Scholar
  20. Capaccioni B, Coniglio S (1995) Varicolored and vesiculated tuffs from La Fossa volcano, Vulcano Island (Aeolian archipelago, Italy): evidence of syndepositional alteration processes. Bull Volcanol 57:61–70Google Scholar
  21. Capasso G, Favara R, Inguaggiato S (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: an interpretative model of fluid circulation. Geochim Cosmochim Acta 61(16):3425–3440Google Scholar
  22. Capasso, G., Favara, R., Francofonte, S., Inguaggiato, S. (1999). Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy) during 1996: evidence of resumed volcanic activity. Journal of Volcanology and Geothermal Research, 88(3), 167–175.Google Scholar
  23. Capasso G, Federico C, Madonia P, Paonita A (2014) Response of the shallow aquifer of the volcano-hydrothermal system during the recent crises at Vulcano Island (Aeolian archipelago, Italy). J Volcanol Geotherm Res 273:70–80Google Scholar
  24. Caron B, Siani G, Sulpizio R, Zanchetta G, Paterne M, Santacroce R, Tema E, Zanella E (2012) Late Pleistocene to Holocene tephrostratigraphic record from the northern Ionian Sea. Mar Geol 311-314:41–51Google Scholar
  25. Carn SA, Watts RB, Thompson G, Norton GE (2004) Anatomy of a lava dome collapse: the 20 March 2000 event at Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 131:241–264Google Scholar
  26. Cerminara M, Esposti Ongaro T, Berselli LC (2016) ASHEE-1.0: a compressible, equilibrium-Eulerian model for volcanic ash plumes. Geosci Model Dev 9:697–730Google Scholar
  27. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57(2):99–110Google Scholar
  28. Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Volcanol 58(1):41–50Google Scholar
  29. Chretien S, Brousse R (1989) Events preceding the great eruption of 8 May 1902 at Mount Pelée, Martinique. J Volcanol Geotherm Res 38:67–75Google Scholar
  30. Clarke AB, Neri A, Voight B, Macedonio G, Druitt TH (2002) Computational modelling of the transient dynamics of the august 1997 Vulcanian explosions at Soufriere Hills volcano, Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersal. Mem-Geol Soc London 21:319–348Google Scholar
  31. Cortese M, Frazzetta G, La Volpe L (1986) Volcanic history of Lipari (Aeolian Islands, Italy) during the last 10,000 years. J Volcanol Geotherm Res 27:117–133Google Scholar
  32. De Astis G, Dellino P, La Volpe L, Lucchi F, Tranne CA (2006) Geological map of the Vulcano Island. Litografia artistica cartografica, FirenzeGoogle Scholar
  33. De Astis G, Lucchi F, Dellino P, La Volpe L, Tranne CA, Frezzotti ML, Peccerillo A (2013) Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). Geol Soc Lond Mem 37:281–349Google Scholar
  34. De Fiore O (1922) Vulcano (Isole Eolie). In: Friedlaender, I. (Ed.), Rivista Vulcanologica (Suppl. 3): 1–393Google Scholar
  35. de' Michieli Vitturi M, Neri A, Esposti Ongaro T, Lo Savio S, Boschi E (2010) Lagrangian modeling of large volcanic particles: application to Vulcanian explosions. J Geophys Res SE 115(B8)Google Scholar
  36. Dade B, Huppert H (1998) Long-runout rockfalls. Geol 26:803–806Google Scholar
  37. Davì M, De Rosa R, Donato P, Vetere F, Barca D, Cavallo A (2009a) Magmatic evolution and plumbing system of ring-fault volcanism: the Vulcanello peninsula (Aeolian Islands, Italy). Eur J Mineral 21:1009–1028Google Scholar
  38. Davì M, De Rosa R, Barca D (2009b) A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian arc, Italy). J Volcanol Geotherm Res 182:45–56Google Scholar
  39. Davì M, De Rosa R, Donato P, Sulpizio R (2011) The Lami pyroclastic succession (Lipari, Aeolian Islands): a clue for unravelling the eruptive dynamics of the Monte Pilato rhyolitic pumice cone. J Volcanol Geotherm Res 201:285–300Google Scholar
  40. Del Bello E, Taddeucci J, de' Michieli Vitturi M, Scarlato P, Andronico D, Scollo S, Kueppers U, Ricci T (2017) Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations. Sci Rep 7:39620Google Scholar
  41. Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato–Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–231Google Scholar
  42. Dellino P, De Astis G, La Volpe L, Mele D, Sulpizio R (2011) Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, southern Italy), as obtained by combining stratigraphy, event statistics and physical modelling. J Volcanol Geotherm Res 201:364–384Google Scholar
  43. Di Traglia F, Pistolesi M, Rosi M, Bonadonna C, Fusillo R, Roverato M (2013) Growth and erosion: volcanic geology and morphological evolution during the last 1000 years of La Fossa (island of Vulcano, southern Italy). Geomorph 194:94–107Google Scholar
  44. Diliberto IS (2017) Long-term monitoring on a closed-conduit volcano: a 25 year long time-series of temperatures recorded at La Fossa cone (Vulcano Island, Italy), ranging from 250°C to 520°C. J Volcanol Geotherm Res 346:151–160Google Scholar
  45. Erfurt-Cooper P (2011) Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage 3(3):187–193Google Scholar
  46. Esposti Ongaro T, Clarke AB, Voight B, Neri A, Widiwijayanti C (2012) Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J Geophys Res SE 117(B6)Google Scholar
  47. Esposti Ongaro T, Orsucci S, Cornolti F (2016) A fast, calibrated model for pyroclastic density currents kinematics and hazard. J Volcanol Geoth Res 327:257–272Google Scholar
  48. Federico C, Capasso G, Paonita A, Favara R (2010) Effects of steam-heating processes on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago). J Volcanol Geotherm Res 192:178–190Google Scholar
  49. Fitzgerald RH, Tsunematsu K, Kennedy BM, Breard ECP, Lube G, Wilson TM, Jolly AD, Pawson J, Rosenberg MD, Cronin SJ (2014) The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at upper Te Maari, Tongariro. J Volcanol Geoth Res 286:248–262Google Scholar
  50. Fitzgerald RH, Kennedy BM, Wilson TM, Leonard GS, Tsunematsu K, Keys H (2017) The communication and risk management of volcanic ballistic hazards. Springer, Berlin Heidelberg, pp 1–27Google Scholar
  51. Forni F, Lucchi F, Peccerillo A, Tranne CA, Rossi PL, Frezzotti ML (2013) Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago). Geol Soc London Mem 37:213–279Google Scholar
  52. Fournier N, Jolly AD (2014) Detecting complex eruption sequence and directionality from high-rate geodetic observations: the August 6, 2012 Te Maari eruption, Tongariro, New Zealand. J Volcanol Geoth Res 286:387–396Google Scholar
  53. Frazzetta G, La Volpe L, Sheridan MF (1983) Evolution of the La Fossa cone, Vulcano. J Volcanol Geotherm Res 17:329–360Google Scholar
  54. Frazzetta G, Gillot PY, La Volpe L, Sheridan MF (1984) Volcanic hazards at La Fossa of Vulcano: data from the last 6000 years. Bull Volcanol 47:105–124Google Scholar
  55. Fujinawa A, Ban M, Ohba T, Kontani K, Miura K (2008) Characterization of low-temperature pyroclastic surges that occurred in the northeastern Japan arc during the late 19th century. J Volcanol Geotherm Res 178:113–130Google Scholar
  56. Fulignati P, Gioncada A, Sbrana A (1998) Geologic model of the magmatic-hydrothermal system of Vulcano (Aeolian Island, Italy). Mineral Petrol 62:195–222Google Scholar
  57. Fulignati P, Gioncada A, Costa S, Di Genova D, Di Traglia F, Pistolesi M (2018) Magmatic sulfide immiscibility at an active magmatic-hydrothermal system: the case of La Fossa (Vulcano, Italy). Volcanol Geotherm Res 358:45–75Google Scholar
  58. Fusillo R, Di Traglia F, Gioncada A, Pistolesi M, Wallace PJ, Rosi M (2015) Deciphering post-caldera volcanism: insight into the Vulcanello (island of Vulcano, southern Italy) eruptive activity based on geological and petrological constraints. Bull Volcanol 77:76Google Scholar
  59. Galderisi A, Bonadonna C, Delmonaco G, Ferrara FF, Menoni S, Ceudech A, Biass S, Frischknecht C, Manzella I, Minucci G, Gregg C (2013) Vulnerability assessment and risk mitigation: the case of Vulcano Island, Italy, Landslide science and practice, volume 7: social and economic impact and policies. Springer Berlin Heidelberg 55–64Google Scholar
  60. Gardner CA, White RA (2002) Seismicity, gas emission and deformation from 18 July to 25 September 1995 during the initial phreatic phase of the eruption of Soufriere Hills Volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (Eds.), The eruption of Soufriere Hills Volcano, Montserrat from 1995 to 1999. Geol Soc London Mem 21:567–581Google Scholar
  61. Germanovich LN, Lowell RP (1995) The mechanism of phreatic eruptions. J Geophys Res 100:8417–8434Google Scholar
  62. Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic pressGoogle Scholar
  63. Gioncada A, Sbrana A (1991) La Fossa caldera. Vulcano: inferences from deep drillings. Acta Vulcanol 1:115–125Google Scholar
  64. Gioncada A, Mazzuoli R, Bisson M, Pareschi MT (2003) Petrology of volcanic products younger than 42 ka on the Lipari–Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. J Volcanol Geotherm Res 122:191–220Google Scholar
  65. Granieri D, Carapezza ML, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33(13)Google Scholar
  66. Gurioli L, Zanella E, Gioncada A, Sbrana A (2012) The historic magmatic–hydrothermal eruption of the breccia di Commenda, Vulcano, Italy. Bull Volcanol 74:1235–1254Google Scholar
  67. Harris AJ, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geoth Res 76(3–4):175–198Google Scholar
  68. Hincks TK, Komorowski J-C, Sparks SR, Aspinall WP (2014) Retrospective analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975–77: volcanic hazard assessment using a Bayesian belief network approach. J Appl Volcanol 3:3Google Scholar
  69. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res Solid Earth 97(B6):9063–9071Google Scholar
  70. Heap MJ, Kennedy BM, Farquharson JI, Ashworth J, Mayer K, Letham-Brake M, Reuschlé T, Albert Gilg H, Scheu B, Lavallée Y, Siratovich P, Cole J, Jolly AD, Baud P, Dingwell DB (2017) A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo volcanic zone, New Zealand). J Volcanol Geoth Res 332:88–108Google Scholar
  71. Heggie TW (2009) Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations. Travel Med Infect Dis 7(5):257–261Google Scholar
  72. Heiken G, Crowe B, McGetchin T, West F, Eichelberger J, Bartram D, Peterson R, Wohletz K (1980) Phreatic eruption clouds: the activity of la Soufriére de Guadeloupe, F.W.I., August–October. Bull Volcanol 43:383–395Google Scholar
  73. Hoblitt RP (2000) Was the 18 May 1980 lateral blast at Mt St Helens the product of two explosions? Phil Trans R Soc London 358:1639–1661Google Scholar
  74. Honda R, Yukutake Y, Morita Y, Sakai SI, Itadera K, Kokubo K (2018) Precursory tilt changes associated with a phreatic eruption of the Hakone volcano and the corresponding source model. earth. Planets and Space 70(1):117Google Scholar
  75. Houghton BF, Swanson DA, Carey RJ, Rausch J, Sutton AJ (2011) Pigeonholing pyroclasts: insights from the 19 March 2008 explosive eruption of Kīlauea volcano. Geology 39:263–266Google Scholar
  76. Hurst T, Jolly AD, Sherburn S (2014) Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand. J Volcanol Geotherm Res 286:294–302Google Scholar
  77. Jolly AD, Jousset P, Lyons JJ, Carniel R, Fournier N, Fry B, Miller C (2014) Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: an example from the 2012 Tongariro eruption. J Volcanol Geotherm Res 286:331–347Google Scholar
  78. Kato A, Terakawa T, Yamanaka Y, Maeda Y, Horikawa S, Matsuhiro K, Okuda T (2016) Preparatory and precursory processes leading up to the 2014 phreatic eruption of mount Ontake, Japan. Earth, Planets and Space 67:111Google Scholar
  79. Keller J (1980) The island of Vulcano. Rend Soc Italian Miner Petrol 36:369–414Google Scholar
  80. Kobayashi T (2018) Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis. J Volcanol Geotherm Res 357:213–223Google Scholar
  81. Kobayashi T, Morishita Y, Munekane H (2018) First detection of precursory ground inflation of a small phreatic eruption by InSAR. Earth Planet Sci Lett 491:244–254Google Scholar
  82. Lajoie J, Boudon G, Bourdier JL (1989) Depositional mechanics of the 1902 pyroclastic Nuee Ardente deposits of Mt. Pelee, Martinique. J Volcanol Geotherm Res 38:131–142Google Scholar
  83. Le Guern F, Bernard A, Chevrier RM (1980) Soufriere of Guadeloupe 1976–1977 eruption-mass and energy transfer and volcanic health hazards. Bull Volcanol 43:577–593Google Scholar
  84. Lube G, Breard EC, Cronin SJ, Procter JN, Brenna M, Moebis A, Pardo N, Stewart RB, Jolly A, Fournier N (2014) Dynamics of surges generated by hydrothermal blasts during the 6 august 2012 Te Maari eruption, Mt. Tongariro, New Zealand. J Volcanol Geotherm Res 286:348–366Google Scholar
  85. Maeno F, Nakada S, Oikawa T, Yoshimoto M, Komori J, Ishizuka Y, Takeshita Y, Shimano T, Kaneko T, Nagai M (2016) Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, Central Japan, based on proximal pyroclastic density current and fallout deposits. Earth, Planets and Space 68:1–20Google Scholar
  86. Mandarano M, Paonita A, Martelli M, Viccaro M, Nicotra E, Millar IL (2016) Revealing magma degassing below closed-conduit active volcanoes: geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy). Lithos 248:272–287Google Scholar
  87. Mannen K, Yukutake Y, Kikugawa G, Harada M, Itadera K, Takenaka J (2018) Chronology of the 2015 eruption of Hakone volcano, Japan: geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis. Earth, Planets and Space 70:1–26Google Scholar
  88. Mayberry GC, Rose WI, Bluth GJS (2002) Dynamics of volcanic and meteorological clouds produced on 26 December (Boxing Day) 1997 at Soufriere Hills Volcano, Montserrat In: Druitt, TH, Kokelaar, BP (Eds), The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999Geol Soc London Mem 21:539–555Google Scholar
  89. Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): petrophysical properties and implications for phreatic eruption processes. J Volcanol Geotherm Res 320:128–143Google Scholar
  90. Mayer K, Scheu B, Yilmaz TI, Montanaro C, Gilg HA, Rott S, Joseph EP, Dingwell DB (2017) Phreatic activity and hydrothermal alteration in the valley of desolation, Dominica, Lesser Antilles. Bull Volcanol 79(12):82Google Scholar
  91. Marini L, Principe C, Chiodini G, Cioni R, Fytikas M, Marinelli G (1993) Hydrothermal eruptions of Nisyros (Dodecanese, Greece)—past events and present hazard. J Volcanol Geotherm Res 56:71–94Google Scholar
  92. Mastin LG (1995) Thermodynamics of gas and steam-blast eruptions. Bull Volcanol 57(2):85–98Google Scholar
  93. McKibbin R, Smith T, Fullard L (2009) Components and phases: modelling progressive hydrothermal eruptions. ANZIAM J 50:365.  https://doi.org/10.1017/S144618110900011X CrossRefGoogle Scholar
  94. Mercalli G, Silvestri O (1891) Le eruzioni dell'isola di Vulcano, incominciate il 3 Agosto 1888 e terminate il 22 Marzo 1880. Annali dell'Ufficio Centrale di Meteorologia e Geodinamica 10:1–213Google Scholar
  95. Miura K, Ban M, Ohba T, Fujinawa A (2012) Sequence of the 1895 eruption of the Zao volcano, Tohoku Japan. J Volcanol Geotherm Res 247:139–157Google Scholar
  96. Montalto A (1995) Seismic assessment of phreatic-explosion hazard at ‘La Fossa’ Volcano (island of Vulcano, Italy). Nat Hazards 11(1):57–73Google Scholar
  97. Montanaro C, Scheu B, Cronin SJ, Breard EC, Lube G, Dingwell DB (2016a) Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 upper Te Maari eruption, New Zealand. Earth Planet Sci Lett 452:281–294Google Scholar
  98. Montanaro C, Scheu B, Gudmundsson MT, Vogfjörd K, Reynolds HI, Dürig T, Strehlow K, Rott S, Reuschlé T, Dingwell DB (2016b) Multidisciplinary constraints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth Planet Sci Lett 434:308–319Google Scholar
  99. Montanaro C, Scheu B, Mayer K, Orsi G, Moretti R, Isaia R, Dingwell DB (2016c) Experimental investigations on the explosivity of steam-driven eruptions: a case study of Solfatara volcano (Campi Flegrei). J Geophys Res Solid Earth 121:7996–8014Google Scholar
  100. Nairn IA, Hedenquist JW, Villamor P, Berryman KR, Shane PA (2005) The ~AD1315 Tarawera and Waiotapu eruptions, New Zealand: contemporaneous rhyolite and hydrothermal eruptions driven by an arrested basalt dike system? Bull Volcanol 67:186–193Google Scholar
  101. Napoli R, Currenti G (2016) Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures. J Volcanol Geother Res 320:40–49Google Scholar
  102. Neri A, Esposti Ongaro T, Macedonio G, Gidaspow D (2003) Multiparticle simulation of collapsing volcanic columns and pyroclastic flow. J Geophys Res SE 108(B4)Google Scholar
  103. Nicotra E, Giuffrida M, Viccaro M, Donato P, D'Oriano C, Paonita A, De Rosa R (2018) Timescales of pre-eruptive magmatic processes at Vulcano (Aeolian Islands, Italy) during the last 1000 years. Lithos 316-317:347–365Google Scholar
  104. Ohba T, Taniguchi H, Miyamoto T, Hayashi S, Hasenaka T (2007) Mud plumbing system of an isolated phreatic eruption at Akita Yakeyama volcano, northern Honshu, Japan. J Volcanol Geotherm Res 161:35–46Google Scholar
  105. Oikawa T, Yoshimoto M, Nakada S, Maeno F, Komori J, Shimano T, Takeshita Y, Ishizuka Y, Ishimine Y (2016) Reconstruction of the 2014 eruption sequence of Ontake volcano from recorded images and interviews. Earth, Planets and Space 68:79Google Scholar
  106. Paonita A, Federico C, Bonfanti P, Capasso G, Inguaggiato S, Italiano F, Madonia P, Pecoraino G, Sortino F (2013) The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim Cosmochim Acta 120:158–178Google Scholar
  107. Pardo N, Cronin SJ, Németh K, Brenna M, Schipper CI, Breard E, White JDL, Procter J, Stewart B, Agustín-Flores J, Moebis A, Zernack A, Kereszturi G, Lube G, Auer A, Neall V, Wallace C (2014) Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geotherm Res 286:397–414Google Scholar
  108. Pistolesi M, Isaia R, Marianelli P, Bertagnini A, Fourmentraux C, Albert PG, Tomlinson EL, Menzies MA, Rosi M, Sbrana A (2016) Simultaneous eruptions from multiple vents at Campi Flegrei (Italy) highlight new eruption processes at calderas. Geology 44:487–490.  https://doi.org/10.1130/G37870.1 CrossRefGoogle Scholar
  109. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15Google Scholar
  110. Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376Google Scholar
  111. Ritchie LJ, Cole PD, Sparks RSJ (2002) Sedimentology of deposits from the pyroclastic density current of 26 December 1997 at Soufrière Hills volcano, Montserrat. Geol Soc London Mem 21:435–456Google Scholar
  112. Roggensack K, Williams SN, Schaefer SJ, Parnell RA (1996) Volatiles from the 1994 eruptions of Rabaul: understanding large caldera systems. Science 273:490–493.  https://doi.org/10.1126/science.273.5274.490 CrossRefGoogle Scholar
  113. Romagnoli C, Casalbore D, Chiocci FL (2012) La Fossa caldera breaching and submarine erosion (Vulcano island, Italy). Mar Geol 303:87–98Google Scholar
  114. Ruch J, Vezzoli L, De Rosa R, Di Lorenzo R, Acocella V (2016) Magmatic control along a strike-slip volcanic arc: the central Aeolian arc (Italy). Tectonics 35:407–424Google Scholar
  115. Sheridan MF (1980) Pyroclastic block flow from the September, 1976, eruption of La Soufrière volcano, Guadeloupe. Bull Volcanol 43:397–402Google Scholar
  116. Sheridan MF, Malin MC (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari, and Vesuvius. J Volcanol Geotherm Res 17(1–4):187–202Google Scholar
  117. Soligo M, De Astis G, Delitala MC, La Volpe L, Taddeucci A, Tuccimei P (2000) Uranium-series disequilibria in the products from Vulcano Island (Sicily, Italy): isotopic chronology and magmatological implications. Acta Vulcanol 12:49–59Google Scholar
  118. Stix J, de Moor JM (2018) Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth. Planets and Space 70(1):83Google Scholar
  119. Strehlow K, Sandri L, Gottsmann JH, Kilgour G, Rust AC, Tonini R (2017) Phreatic eruptions at crater lakes: occurrence statistics and probabilistic hazard forecast. J Appl Volcanol 6:4Google Scholar
  120. Tanaka R, Hashimoto T, Matsushima N, Ishido T (2018) Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations. Earth. Planets and Space 70(1):72Google Scholar
  121. Thomas ME, Petford N, Bromhead EN (2004) The effect of internal gas pressurization on volcanic edifice stability: evolution towards a critical state. Terra Nova 16:312–317Google Scholar
  122. Tsunematsu K, Ishimine Y, Kaneko T, Yoshimoto M, Fujii T, Yamaoka K (2016) Estimation of ballistic block landing energy during 2014 mount Ontake eruption. Earth, Planets and Space 68:88Google Scholar
  123. Ventura G (1994) Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian archipelago, southern Tyrrhenian Sea). J Volcanol Geotherm Res 60(3–4):207–224Google Scholar
  124. Ventura G, Vilardo G, Milano G, Pino NA (1999) Relationships among crustal structure, volcanism and strike–slip tectonics in the Lipari–Vulcano volcanic complex (Aeolian Islands, southern Tyrrhenian Sea, Italy). Phy Earth Plan Int 116(1–4):31–52Google Scholar
  125. Voltaggio M, Barbieri M, Branca M, Castorina F, Taddeucci A, Tecce F, Tuccimei P, Turi B, Vesica P (1997) Calcite in fractures in a volcanic environment (Vulcano Island, Italy): contribution of geochronological and isotopic studies to volcanotectonics. J Volcanol Geotherm Res 75(3–4):271–282Google Scholar
  126. Walker GP (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714Google Scholar
  127. Woods AW, Sparks RSJ, Ritchie LJ, Batey J, Gladstone C, Bursik MI (2002) The explosive decompression of a pressurized volcanic dome: the 26 December 1997 collapse and explosion of Soufrière Hills volcano, Montserrat. Geol Soc London Mem 21:457–465Google Scholar
  128. Yamamoto T, Nakamura Y, Glicken H (1999) Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J Volcanol Geotherm Res 90:191–207Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mauro Rosi
    • 1
  • Federico Di Traglia
    • 2
    Email author
  • Marco Pistolesi
    • 1
  • Tomaso Esposti Ongaro
    • 3
  • Mattia de’ Michieli Vitturi
    • 3
  • Costanza Bonadonna
    • 4
  1. 1.Dipartimento di Scienze della TerraUniversità di PisaPisaItaly
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PisaPisaItaly
  4. 4.Département des Sciences de la TerreUniversité de GenèveGenevaSwitzerland

Personalised recommendations