Advertisement

Bulletin of Volcanology

, 80:75 | Cite as

Magmatic reactivation of the Campi Flegrei volcanic system: insights from the Baia–Fondi di Baia eruption

  • Marija Voloschina
  • Marco Pistolesi
  • Antonella Bertagnini
  • Nicole Métrich
  • Massimo Pompilio
  • Alessio Di Roberto
  • Sara Di Salvo
  • Lorella Francalanci
  • Roberto Isaia
  • Raffaello Cioni
  • Claudia Romano
Research Article
  • 168 Downloads

Abstract

The Baia–Fondi di Baia was a multi-stage, small-scale eruption which occurred in the western part of the Campi Flegrei caldera at 9525–9696 BP, marking the onset of Epoch 2 of post-Neapolitan Yellow Tuff volcanism. The eruption was characterized by a complex series of events related to two distinct eruptive episodes (Baia and Fondi di Baia) separated by a short time interval, and each characterized by several eruptive phases. Mineralogical, geochemical (major, and trace elements on whole rocks, major and volatile elements on matrix glasses, and melt inclusions), and Sr isotope characterization of the tephra material sampled along the entire sequence was carried out in order to constrain magmatic evolution and dynamics of the feeding system. Three main compositional groups were identified in matrix glasses and interpreted as representative of different magma bodies: (i) a trachyte (SiO2 60.3–64.7 wt.%), which is volumetrically predominant; (ii) a tephriphonolite-latite (SiO2: 55.1–57.9 wt.%); and (iii) an intermediate magma group between phonolite and trachyte compositions. This wide compositional heterogeneity contrasts with the narrow variability recognized in the bulk-rock compositions, which are all trachytic. Mineral, melt inclusions, and Sr isotope data suggest that the trachytic magma possibly derived from the Campanian Ignimbrite reservoir located at 6–9 km depth. Volatile content in matrix glass indicates a storage depth of at least 6 km for the tephriphonolite-latitic magma. The intermediate magma is interpreted as being derived from a remelting and assimilation process of a partially crystallized trachytic body (crystal mush) by the hotter tephriphonolite-latitic magma. As the tephriphonolite-latite was erupted together with the trachyte from the beginning of the eruption, we suggest that the ascent of this magma played a fundamental role in triggering the eruption. Upwards through the tephra sequence, we observed a progressive increase of the tephriphonolite-latitic and intermediate phonolite-trachytic components. The presence of banded clasts characterized by different compositions is also indicative of syn-eruptive mingling during the final phases of the eruption.

Keywords

Phlegrean fields Geochemistry Matrix glass Melt inclusions Isotopic composition 

Notes

Acknowledgements

We thank S. Campagnola for micro-Raman analyses and D. Mazzarella for having provided access to his private properties. We also thank J. Martì and an anonymous reviewer for their constructive comments and C. Bonadonna for editorial handling.

Funding information

This study was funded by the “Project V1: Probabilistic Volcanic Hazard Analysis” in the framework of the agreement between Dipartimento di Protezione Civile and Istituto Nazionale di Geofisica e Vulcanologia (Research Unit UNIFI, responsible M. Pistolesi) and by the project "PRA 2018 (Progetti di Ricerca di Ateneo)" of University of Pisa.

Supplementary material

445_2018_1247_MOESM1_ESM.pdf (116 kb)
ESM 1 (PDF 116 kb)
445_2018_1247_MOESM2_ESM.png (777 kb)
Figure S1 (a) K2O vs SiO2 and (b) CaO vs MgO plots showing comparison between SEM-EDS and EMPA data. (PNG 777 kb)
445_2018_1247_Fig13_ESM.png (147 kb)
Figure S2

Diagram of Sr versus CaO with the variability fields for matrix glasses and bulk rocks of the Phlegrean Fields. Data from Georoc database have been plotted after review and improvement. Legend: Post-NYT, post-Neapolitan Yellow Tuff; NYT, Neapolitan Yellow Tuff; Post-CI and pre-NYT, volcanic activity between Neapolitan Yellow Tuff and Campanian Ignimbrite; CI, Campanian Ignimbrite; Pre-CI, pre-Campanian Ignimbrite activity. (PNG 146 kb)

445_2018_1247_MOESM3_ESM.tif (11.6 mb)
High resolution image (TIF 11857 kb)
445_2018_1247_Fig14_ESM.png (140 kb)
Figure S3

Diagram of 87Sr/86Sr versus CaO with the variability fields for matrix glasses and bulk rocks at Campi Flegrei. Data from Georoc database have been plotted after careful review. Legend: Post-NYT, post-Neapolitan Yellow Tuff; NYT, Neapolitan Yellow Tuff; Post-CI and pre-NYT, volcanic activity between Neapolitan Yellow Tuff and Campanian Ignimbrite; CI, Campanian Ignimbrite; Pre-CI, pre-Campanian Ignimbrite activity. Baia and Fondi di Baia data from this work are also reported for comparison. (PNG 140 kb)

445_2018_1247_MOESM4_ESM.tif (10.7 mb)
High resolution image (TIF 10926 kb)
445_2018_1247_MOESM5_ESM.xlsx (12 kb)
Table S1 Whole-rock data (major and trace elements) for both Baia and Fondi di Baia samples. (XLSX 12 kb)
445_2018_1247_MOESM6_ESM.xlsx (76 kb)
Table S2 SEM-EDS matrix glass analyses for both Baia and Fondi di Baia samples on anhydrous base. Totals (not recalculated) are also shown. (XLSX 76 kb)
445_2018_1247_MOESM7_ESM.xlsx (15 kb)
Table S3 Sr-isotope compositions and SEM-EDS major element analyses (wt.%) of Baia and Fondi di Baia matrix glasses. (XLSX 14 kb)
445_2018_1247_MOESM8_ESM.xlsx (17 kb)
Table S4 EMPA major element compositions (wt.%) of tephra clasts from Baia and Fondi di Baia matrix glasses used for 87Sr/86Sr analyses. (XLSX 16 kb)
445_2018_1247_MOESM9_ESM.txt (63 kb)
Table S5 Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch A. (TXT 62 kb)
445_2018_1247_MOESM10_ESM.txt (32 kb)
Table S6 Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch B. (TXT 32 kb)
445_2018_1247_MOESM11_ESM.txt (38 kb)
Table S7 Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch C. (TXT 37 kb)
445_2018_1247_MOESM12_ESM.txt (303 kb)
Table S8 Dataset produced with Rhyolite-MELTS simulation of assimilation process of melt batches A and B. (TXT 303 kb)
445_2018_1247_MOESM13_ESM.xlsx (34 kb)
Table S9 Calculations of limestone contamination of a melt batch A to match B and C compositions. (XLSX 34 kb)

References

  1. Acocella V (2007) Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth Sci Rev 85:125–160.  https://doi.org/10.1016/j.earscirev.2007.08.004.CrossRefGoogle Scholar
  2. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78CrossRefGoogle Scholar
  3. Anderson AT, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl, and gas in Plinian and ash-flow bishop rhyolite. Geology 17(3):221–225CrossRefGoogle Scholar
  4. Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem Geol 270(1–4):135–147CrossRefGoogle Scholar
  5. Arienzo I, Mazzeo FC, Moretti R, Cavallo A, D'Antonio M (2016) Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The example of the Nisida eruption. Chem Geol 427:109–124.  https://doi.org/10.1016/j.chemgeo.2016.02.007
  6. Audétat A, Lowenstern JB (2014) Melt inclusions. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 143–173CrossRefGoogle Scholar
  7. Balcone-Boissard H, Boudon G, Cioni R, Webster JD, Zdanowicz G, Orsi G, Civetta L (2016) Chlorine as a geobarometer for alkaline magmas: evidence from a systematic study of the eruptions of mount Somma-Vesuvius. Sci Rep 6:21726.  https://doi.org/10.1038/srep21726 CrossRefGoogle Scholar
  8. Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegrean fields case history. Atti Conv Lincei 80:387–405Google Scholar
  9. Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegrean fields 1982-1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185CrossRefGoogle Scholar
  10. Bevilacqua A, Isaia R, Neri A, Vitale S, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Esposti Ongaro T, Iannuzzi E, Pistolesi M, Rosi M (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J Geophys Res Solid Earth 120:2309–2329CrossRefGoogle Scholar
  11. Bevilacqua A, Neri A, Bisson M, Esposti Ongaro T, Flandoli F, Isaia R, Rosi M, Vitale S (2017) The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy). Front Earth Sci 5(72):1–16.  https://doi.org/10.1142/p156 CrossRefGoogle Scholar
  12. Bosworth W, Burke K, Strecker M (2003) Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics 22(1042).  https://doi.org/10.1029/2002TC001369
  13. Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli1 eruptions at Campi Flegrei (Italy). Chem Geol 237(3–4):418–443CrossRefGoogle Scholar
  14. Cashman KV, Giordano G (2014) Calderas and magma reservoirs. J Volcanol Geotherm Res 288:28–45.  https://doi.org/10.1016/j.jvolgeores.2014.09.007 CrossRefGoogle Scholar
  15. Chiodini G, Vandemeulebrouck J, Caliro S, D'Auria L, De Martino P, Mangiacapra A, Petrillo Z (2015) Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet Sci Lett 414:58–67CrossRefGoogle Scholar
  16. Chiodini G, Paonita A, Aiuppa A, Costa A, Caliro S, De Martino P, Acocella V, Vandemeulebrouck J (2016) Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat Commun 7:13712CrossRefGoogle Scholar
  17. Civetta L, Carluccio E, Innocenti F, Sbrana A, Taddeucci G (1991) Magma chamber evolution under the Phlegraean field during the last 10 ka: trace element and isotopic data. Eur J Mineral 3:415–428CrossRefGoogle Scholar
  18. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219CrossRefGoogle Scholar
  19. Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26CrossRefGoogle Scholar
  20. D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268CrossRefGoogle Scholar
  21. D’Auria L, Giudicepietro F, Aquino I, Borriello G, Del Gaudio C, Lo Bascio D, Martini M, Ricciardi GP, Ricciolino P, Ricco C (2011) Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J Geophys Res 116:B0431.  https://doi.org/10.1029/2010JB007837 CrossRefGoogle Scholar
  22. D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P, Tizzani P, Casu F, Lanari R, Manzo M, Martini M, Sansosti E, Zinno I (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci Rep 5:13100.  https://doi.org/10.1038/srep13100 CrossRefGoogle Scholar
  23. De Paolo D (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  24. Deino AL, Orsi G, De Vita S, Piochi M (2004) The age of the Neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170CrossRefGoogle Scholar
  25. Del Gaudio C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195:48–56CrossRefGoogle Scholar
  26. De Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301CrossRefGoogle Scholar
  27. De Natale G, Troise C, Mark D, Mormone A, Piochi M, Di Vito MA, Isaia R, Carlino S, Barra D, Somma R (2016) The Campi Flegrei deep drilling project (CFDDP): new insight on caldera structure, evolution and hazard implications for the Naples area (southern Italy). Geochem Geophys Geosyst 17(12):4836–4847.  https://doi.org/10.1007/s00531-013-0979-0 CrossRefGoogle Scholar
  28. Di Genova D, Sicola S, Romano C, Vona A, Fanara S, Spina S (2017) Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem Geol 475:76–86CrossRefGoogle Scholar
  29. Di Giuseppe MG, Troiano A, Carlino S (2017) Magnetotelluric imaging of the resurgent caldera on the island of ischia (southern Italy): inferences for its structure and activity. Bull Volcanol 79(85).  https://doi.org/10.1007/s00445-017-1170-4
  30. Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196CrossRefGoogle Scholar
  31. Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241CrossRefGoogle Scholar
  32. Di Vito MA, Arienzo I, Briar G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei caldera (Italy). Bull Volcanol 73:295–320CrossRefGoogle Scholar
  33. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246CrossRefGoogle Scholar
  34. Esposti Ongaro T, Neri A, Menconi G, de'Michieli Vitturi M, Marianelli P, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):378–396CrossRefGoogle Scholar
  35. Fedele L, Insinga DD, Calvert AT, Morra V, Perrotta A, Scarpati C (2011) 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol 73:1323–1336CrossRefGoogle Scholar
  36. Fedele L, Lustrino M, Melluso L, Morra V, Zanetti A, Vannucci R (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (southern Italy). Am Minerol 100:233–249CrossRefGoogle Scholar
  37. Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: insights into the Campanian ignimbrite magma chamber (Campi Flegrei, Italy). EPSL 449:251–279CrossRefGoogle Scholar
  38. Fourmentraux C, Métrich N, Bertagnini A, Rosi M (2012) Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean fields, Italy). Contrib Mineral Petrol 163:1121–1137CrossRefGoogle Scholar
  39. Giaccio B, Hajdas I, Isaia R, Deino A, Nomade S (2017) High precision 14C and 40Ar/39Ar dating of the Campanian ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci Rep 7:45940.  https://doi.org/10.1038/srep45940 CrossRefGoogle Scholar
  40. Ginibre C, Wörner G, Kronz A (2004) Structure and dynamics of the Laacher see magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. J Petrol 45:2197–2223CrossRefGoogle Scholar
  41. Gottsmann J, Martì J (2008) Caldera volcanism. Analysis, modelling and response. Elsevier Science ISBN: 9780080558974Google Scholar
  42. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890CrossRefGoogle Scholar
  43. Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33(6):441.  https://doi.org/10.1130/G21294.1 CrossRefGoogle Scholar
  44. Hildreth W, Wilson CJN (2007) Compositional zoning of the BishopTuff. J Petrol 48:951–999.  https://doi.org/10.1093/petrology/egm007 CrossRefGoogle Scholar
  45. Houghton BF, Wilson C (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  46. Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303CrossRefGoogle Scholar
  47. Le Maitre RW (1989) In: Bateman P, Dudek A, Keller J, Lameyr J, Le Bas MJ, Sabine PJ, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (eds) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Trowbridge, pp 1–193Google Scholar
  48. Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304CrossRefGoogle Scholar
  49. Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian ignimbrite. Geology 34(11):937–940CrossRefGoogle Scholar
  50. Montanaro C, Scheu B, Mayer K, Orsi G, Moretti R, Isaia R, Dingwell DB (2016) Experimental investigations on the explosivity of steam-driven eruptions: a case study of Solfatara volcano (Campi Flegrei). J Geophys Res Solid Earth 121:7996–8014.  https://doi.org/10.1002/2016JB013273 CrossRefGoogle Scholar
  51. Moretti R, Troise C, Sarno F, De Natale G (2018) Caldera unrest driven by CO2-induced drying of the deep hydrothermal system. Sci Rep 8(8309).  https://doi.org/10.1038/s41598-018-26610-2
  52. Mormone A, Piochi M, Bellatreccia F, De Asti G, Moretti R, Della Venture G, Cavallo A, Mangiacapra A (2011) A CO2-rich magma source beneath the Phlegraean Volcanic District (southern Italy). Evidence from a melt inclusion study. Chem Geol 287:66–80CrossRefGoogle Scholar
  53. Neri A, Bevilacqua A, Esposti Ongaro T, Isaia R, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Iannuzzi E, Orsucci S, Pistolesi M, Rosi M, Vitale S (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J Geophys Res Solid Earth 120(4):2330–2349.  https://doi.org/10.1002/2014JB011776 CrossRefGoogle Scholar
  54. Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. US Geological Survey Bulletin. US Geological Survey, Reston 1108 ppGoogle Scholar
  55. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530CrossRefGoogle Scholar
  56. Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layer magma chamber: the Neapolitan yellow tuff case history. J Volcanol Geotherm Res 67: 291–312Google Scholar
  57. Orsi G, Civetta L, Del Gaudio C, De Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short–term ground deformation and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block–resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451CrossRefGoogle Scholar
  58. Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287(1–2):265–276.  https://doi.org/10.1016/j.epsl.2009.08.013 CrossRefGoogle Scholar
  59. Pabst S, Wörner G, Civetta L, Tesoro R (2007) Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70:961–976CrossRefGoogle Scholar
  60. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chem Geol 229:78–95CrossRefGoogle Scholar
  61. Pistolesi M, Isaia R, Marianelli P, Bertagnini A, Fourmentraux C, Albert PG, Tomlinson EL, Menzies MA, Rosi M, Sbrana A (2016) Simultaneous eruptions from multiple vents at Campi Flegrei (Italy) highlight new eruption processes at calderas. Geology 44(6):487–490.  https://doi.org/10.1130/G37870.1 CrossRefGoogle Scholar
  62. Pistolesi M, Bertagnini A, Di Roberto A, Isaia R, Vona A, Cioni R, Giordano G (2017) The Baia–Fondi di Baia eruption at Campi Flegrei (Italy): stratigraphy and dynamics of a multi-stage event marking the reactivation of the caldera. Bull Volcanol 79:67–79CrossRefGoogle Scholar
  63. Quick JE, Sinigoi S, Peressini G, Demarchi G, Wooden JL, Sbisà A (2009) Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37(7):603–606.  https://doi.org/10.1130/G30003A.1 CrossRefGoogle Scholar
  64. Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566.  https://doi.org/10.1130/0091-7613 CrossRefGoogle Scholar
  65. Roggensack K, Williams S, Schaefer S (1996) Volatiles from the 1994 eruptions for Rabaul: understanding large caldera systems. Science 273:490–493CrossRefGoogle Scholar
  66. Rosi M, Sbrana A (eds) (1987) The Phlegraean fields. Quad Ric Sci CNR Rome 114(10):175Google Scholar
  67. Saccorotti G, Petrosino S, Bianco F, Castellano M, Galluzzo D, La Rocca M, Del Pezzo E, Zaccarelli L, Cusano P (2007) Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei caldera, Italy. Phys Earth Planet Inter 165(1):14–24.  https://doi.org/10.1016/j.pepi.2007.07.006 CrossRefGoogle Scholar
  68. Selva J, Orsi G, Di Vito MA, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera (Italy). Bull Volcanol 74:497–510CrossRefGoogle Scholar
  69. Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian ignimbrite eruption, Phlegrean fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220CrossRefGoogle Scholar
  70. Signorelli S, Carroll MR (2000) Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim Cosmochim Acta 64(16):2851–2862CrossRefGoogle Scholar
  71. Signorelli S, Vaggelli G, Romano C, Caroll MR (2001) Volatile element zonation in Campanian ignimbrite magmas (Phlegrean fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contrib Mineral Petrol 140:543–553CrossRefGoogle Scholar
  72. Signorelli S, Carroll MR (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib Mineral Petrol 143:209–218CrossRefGoogle Scholar
  73. Slaby E, Götze J, Wörner G, Simon K, Wrzalik R, Smigielski M (2008) K-feldspar phenocrysts in microgranular magmatic enclaves: a cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos 105:85–97CrossRefGoogle Scholar
  74. Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660CrossRefGoogle Scholar
  75. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15CrossRefGoogle Scholar
  76. Stock M, Humphreys MCS, Smith VC, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J Pet.  https://doi.org/10.1093/petrology/egy020/4955202
  77. Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69:595–622CrossRefGoogle Scholar
  78. Sulpizio R, Dellino P, Doronxo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–55CrossRefGoogle Scholar
  79. Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system feeding the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (South Italy). Lithos 107:135–151CrossRefGoogle Scholar
  80. Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro U, Boschi E (2007) Renewed ground uplift at Campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophys Res Lett 34:L03301.  https://doi.org/10.1029/2006GL028545 CrossRefGoogle Scholar
  81. Vidal MC et al (2016) The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the common era. Sci Rep 6:34868.  https://doi.org/10.1038/srep348681 CrossRefGoogle Scholar
  82. Walter TR, Shirzaei M, Manconi A, Solaro G, Pepe A, Manzo M, Sansosti E (2014) Possible coupling of Campi Flegrei and Vesuvius as revealed by InSAR time series, correlation analysis and time dependent modeling. J Volcanol Geotherm Res 280:104–110CrossRefGoogle Scholar
  83. Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210:33–48CrossRefGoogle Scholar
  84. Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in S-O-H-C-Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Mineral Geochem 73:247–283CrossRefGoogle Scholar
  85. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306.  https://doi.org/10.1029/2008GL034242 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marija Voloschina
    • 1
    • 2
  • Marco Pistolesi
    • 2
  • Antonella Bertagnini
    • 3
  • Nicole Métrich
    • 4
  • Massimo Pompilio
    • 3
  • Alessio Di Roberto
    • 3
  • Sara Di Salvo
    • 5
  • Lorella Francalanci
    • 5
  • Roberto Isaia
    • 6
  • Raffaello Cioni
    • 5
  • Claudia Romano
    • 7
  1. 1.School of Agriculture and Environment, Massey UniversityPalmerston NorthNew Zealand
  2. 2.Dipartimento di Scienze della TerraUniversità di PisaPisaItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaSezione di PisaPisaItaly
  4. 4.Institut de Physique du Globe de ParisParisFrance
  5. 5.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  6. 6.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio VesuvianoNaplesItaly
  7. 7.Dipartimento di ScienzeUniversità di Roma TreRomeItaly

Personalised recommendations