Advertisement

Bulletin of Volcanology

, 80:68 | Cite as

Long-term eruptive trends from space-based thermal and SO2 emissions: a comparative analysis of Stromboli, Batu Tara and Tinakula volcanoes

  • M. Laiolo
  • F. Massimetti
  • C. Cigolini
  • M. Ripepe
  • D. Coppola
Research Article
  • 187 Downloads

Abstract

Batu Tara (Indonesia) and Tinakula (Solomon Island) are two poorly known volcanoes with morphologies and short-term eruptive activity similar to Stromboli (Italy). However, quantitative information about their long-term eruptive behaviour is limited, making the comparisons with Stromboli descriptive and based on short periods of observations. Here, we use over a decade of satellite data to measure and compare the radiant flux (2000–2017) and the SO2 mass (2004–2017) of all three volcanoes. The combined analysis of volcanic radiant power (from MODIS data) and SO2 flux (from OMI data) reveals different long-term eruptive trends and contrasting ratios of SO2/VRP. These data indicate that the eruptive mechanisms operating at each volcano are quite different. The persistent open-vent activity of Stromboli volcano is episodically interrupted by flank eruptions that drain degassed magma stored in the very shallow portion of the central conduit. In contrast, a long-lasting exponential decay of both VRP and SO2 flux observed at Batu Tara is consistent with the eruption of undegassed magma from a deep, closed magma chamber, whilst Tinakula displays multiple year-long eruptive phases, characterised by evolving gas/thermal ratios and an eruptive intensity increasing with time. Magma budget calculations for the latter volcano are consistent with eruption from a volatile-zoned magma chamber, coupled with periods of gas/magma accumulations at depth. Our results suggest that the combined analysis of satellite thermal/gas data provides a valuable tool for decrypting the long-term volcanic dynamics that could remain hidden over shorter timescales.

Keywords

Stromboli twins MODIS OMI Volcanic radiative power Gas/magma balance Magma budget 

Notes

Acknowledgments

MIROVA is a collaborative project between the Universities of Turin and Florence (Italy) and is supported by the Italian Civil Protection Department. We acknowledge the LANCE-MODIS system (http://lance-modis.eosdis.nasa.gov/) for providing Level 1B MODIS data. ASTER images are visible on the Geological Survey of Japan portal (https://www.gsj.jp/); the data are courtesy of USGS and available at http://earthexplorer.usgs.gov/. Analyses and visualisations used in Fig. S1 were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC (http://disc.sci.gsfc.nasa.gov/). The constructive comments of three unknown reviewers have been truly appreciated. We warmly thank the Associate Editor M. R. James whose inspired suggestions contributed to greatly improving the quality of the manuscript and motivated us to publish this research.

Supplementary material

445_2018_1242_MOESM1_ESM.docx (456 kb)
ESM 1 (DOCX 455 kb)
445_2018_1242_MOESM2_ESM.xls (34 kb)
ESM 2 (XLS 34 kb)
445_2018_1242_MOESM3_ESM.xls (32 kb)
ESM 3 (XLS 32 kb)

References

  1. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello GA (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295:195–204.  https://doi.org/10.1016/j.Epsl.2010.03.040 CrossRefGoogle Scholar
  2. Aiuppa A, de Moor JM, Arellano S, Coppola D, Francofonte V, Galle B, Giudice G, Liuzzo M, Mendoza E, Saballos A, Tamburello G, Battaglia A, Bitetto M, Gurrieri S, Laiolo M, Mastrolia A, Moretti M (2018) Tracking formation of a lava lake from ground and space: Masaya volcano (Nicaragua), 2014–2017. Geochem Geophys Geosyst 19(2):496–515.  https://doi.org/10.1002/2017GC007227 CrossRefGoogle Scholar
  3. Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330.  https://doi.org/10.1038/368326a0 CrossRefGoogle Scholar
  4. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103(D19):25251–25261CrossRefGoogle Scholar
  5. Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187Google Scholar
  6. Barrière J, Oth A, Theys N, d’Oreye N, Kervyn F (2017) Long-term monitoring of long-period seismicity and space-based SO2 observations at African lava lake volcanoes Nyiragongo and Nyamulagira (DR Congo). Geophys Res Lett 44(12):6020–6029.  https://doi.org/10.14470/XI058335 CrossRefGoogle Scholar
  7. Beirle S, Hormann C, Penning de Vries M, Dorner S, Kern C, Wagner T (2014) Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kılauea volcano, Hawai‘i. Atmos Chem Phys 14:8309–8322.  https://doi.org/10.5194/acp-14-8309-2014 CrossRefGoogle Scholar
  8. Biggs J, Ebmeier SK, Aspinall WP, Lu Z, Pritchard ME, Sparks RSJ, Mather TA (2014) Global link between deformation and volcanic eruption quantified by satellite imagery. Nat Commun 5:3471.  https://doi.org/10.1038/ncomms4471 CrossRefGoogle Scholar
  9. Biggs J, Pritchard ME (2017) Global volcano monitoring: what does it mean when volcanoes deform? Elements 13(1):17–22.  https://doi.org/10.2113/gselements.13.1.17 CrossRefGoogle Scholar
  10. Blake S, Ivey GN (1986) Density and viscosity gradients in zoned magma chambers, and their influence on withdrawal dynamics. J Volcanol Geotherm Res 30:201–230.  https://doi.org/10.1016/0377-0273(86)90055-7 CrossRefGoogle Scholar
  11. Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids; a model calculation. Am J Sci 272(5):438–475.  https://doi.org/10.1016/0377-0273(86)90055-7 CrossRefGoogle Scholar
  12. Burton MR, Caltabiano T, Murè F, Salerno GG, Randazzo D (2009) SO2 flux from Stromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J Volcanol Geotherm Res 182(3–4):214–220.  https://doi.org/10.1016/j.jvolgeores.2008.11.025 CrossRefGoogle Scholar
  13. Calvari S, Spampinato L, Bonaccorso A, Oppenheimer C, Rivalta E, Boschi E (2011) Lava effusion—a slow fuse for paroxysms at Stromboli volcano? Earth Planet Sci Lett 301(1–2):317–323.  https://doi.org/10.1016/j.epsl.2010.11.015 CrossRefGoogle Scholar
  14. Calvari S, Bonaccorso A, Madonia P, Neri M, Liuzzo M, Salerno GG, Behncke B, Caltabiano T, Cristaldi A, Giuffrida G, La Spina A, Marotta E, Ricci T, Spampinato L (2014) Major eruptive style changes induced by structural modifications of a shallow conduit system: the 2007–2012 Stromboli case. Bull Volcanol 76:841.  https://doi.org/10.1007/s00445-014-0841-7 CrossRefGoogle Scholar
  15. Carn SA, Clarisse L, Prata AJ (2016) Multi-decadal satellite measurements of global volcanic degassing. J Volcanol Geotherm Res 311:99–134.  https://doi.org/10.1016/j.jvolgeores.2016.01.002 CrossRefGoogle Scholar
  16. Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:44095.  https://doi.org/10.1038/srep44095 CrossRefGoogle Scholar
  17. Chaussard E, Amelung F, Aoki Y (2013) Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J Geophys Res Solid Earth 118:3957–3969.  https://doi.org/10.1002/jgrb.50288 CrossRefGoogle Scholar
  18. Cook HJ, Koraua BL, McConachy TF (2012) Observations of Tinakula Volcano, 10 May 2012, Solomon Islands (−10.38°S / 165.8°E), Informal report, 12 pp.Google Scholar
  19. Coppola D, Cigolini C (2013) Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data. Bull Volcanol 75(8):1–15.  https://doi.org/10.1007/s00445-013-0744-z CrossRefGoogle Scholar
  20. Coppola D, Piscopo D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2012) Radiative heat power at Stromboli volcano during 2000–2011: twelve years of MODIS observations. J Volcanol Geotherm Res 215–216:48–60.  https://doi.org/10.1016/j.jvolgeores.2011.12.001 CrossRefGoogle Scholar
  21. Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48.  https://doi.org/10.1016/j.jvolgeores.2012.09.005 CrossRefGoogle Scholar
  22. Coppola D, Laiolo M, Delle Donne D, Ripepe M, Cigolini C (2014) Hot-spot detection and characterization of strombolian activity from MODIS infrared data. Int J Remote Sens 35(9):3403–3426.  https://doi.org/10.1080/01431161.2014.903354 CrossRefGoogle Scholar
  23. Coppola D, Macedo O, Ramos D, Finizola A, Delle Donne D, del Carpio J, White R, McCausland W, Centeno R, Rivera M, Apaza F, Ccallata B, Chilo W, Cigolini C, Laiolo M, Lazarte I, Machaca R, Masias P, Ortega M, Puma N, Taipe E (2015) Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring. J Volcanol Geotherm Res 302:199–210.  https://doi.org/10.1016/j.jvolgeores.2015.07.005 CrossRefGoogle Scholar
  24. Coppola D, Laiolo M, Cigolini C (2016a) Fifteen years of thermal activity at Vanuatu’s volcanoes (2000–2015) revealed by MIROVA. J Volcanol Geotherm Res 322:6–19.  https://doi.org/10.1016/j.jvolgeores.2015.11.005 CrossRefGoogle Scholar
  25. Coppola D, Laiolo M, Lara L, Cigolini C, Orozco G (2016b) The 2008 “silent” eruption of Nevados de Chillán (Chile) detected from space: effusive rates and trends from the MIROVA system. J Volcanol Geotherm Res 327:322–329.  https://doi.org/10.1016/j.jvolgeores.2016.08.016 CrossRefGoogle Scholar
  26. Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2016c) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling, and responding to effusive eruptions. Geological Society, London, Special Publication 426.  https://doi.org/10.1144/SP426.5 Google Scholar
  27. Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D (2016d) Birth of a lava lake: Nyamulagira volcano 2011–2015. Bull Volcanol 78.  https://doi.org/10.1007/s00445-016-1014-7
  28. Coppola D, Ripepe M, Laiolo M, Cigolini C (2017a) Modelling satellite-derived magma discharge to explain caldera collapse. Geology 45(6):523–526.  https://doi.org/10.1130/G38866.1 CrossRefGoogle Scholar
  29. Coppola D, Laiolo M, Franchi A, Massimetti F, Cigolini C, Lara LE (2017b) Measuring effusion rates of obsidian lava flows by means of satellite thermal data. J Volcanol Geotherm Res 347:82–90.  https://doi.org/10.1016/j.jvolgeores.2017.09.003 CrossRefGoogle Scholar
  30. Coppola D, Di Muro A, Peltier A, Villeneuve N, Ferrazzini V, Favalli M, Bachèlery P, Gurioli L, Harris AJL, Moune S, Vlastélic I, Galle B, Arellano S, Aiuppa A (2017c) Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island). Earth Planet Sci Lett 463:13–24.  https://doi.org/10.1016/j.epsl.2017.01.024 CrossRefGoogle Scholar
  31. Davies HL, Keene JB, Hashimoto K, Joshima M, Stuart JE, Tiffin DL (1986) Bathymetry and canyons of the western Solomon Sea. Geo-Mar Lett 6(4):181–191.  https://doi.org/10.1007/BF02239579 CrossRefGoogle Scholar
  32. Davies HL, Bani P, Black P, Smith I, Garaebiti E (2005) Geology of Oceania (including Fiji, Ping and Solomons). In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology, vol 4. Elsevier, Oxford, pp 109–123CrossRefGoogle Scholar
  33. De Astis G, Ventura G, Vilardo G (2003) Geodynamic significance of the Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural, seismological, and geochemical data. Tectonics 22(4):1040.  https://doi.org/10.1029/2003TC001506 CrossRefGoogle Scholar
  34. Dean KG, Servilla M, Roach A, Foster B, Engle K (1998) Satellite monitoring of remote volcanoes improves study efforts in Alaska. EOS Trans Am Geophys Union 79:422–423.  https://doi.org/10.1029/98EO00316 CrossRefGoogle Scholar
  35. Dzurisin D (2001) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41(1).  https://doi.org/10.1029/2001RG000107
  36. Elburg MA, Van Bergen MJ, Foden JD (2004) Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda arc, Indonesia. Geology 32:41–44.  https://doi.org/10.1130/G19941.1 CrossRefGoogle Scholar
  37. Elburg MA, Kamenetsky VS, Foden JD, Sobolev A (2007) The origin of medium-K ankaramitic arc magmas from Lombok (Sunda act, Indonesia): mineral and melt inclusion evidence. Chem Geol 240:260–279.  https://doi.org/10.1016/j.chemgeo.2007.02.015 CrossRefGoogle Scholar
  38. Favalli MM, Karátson D, Mazzuoli R, Pareschi MT, Ventura G (2005) Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bull Volcanol 68:157–170.  https://doi.org/10.1007/s00445-005-0429-3 CrossRefGoogle Scholar
  39. Fioletov VE, McLinden CA, Krotkov N, Li C (2015) Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys Res Lett 42:1969–1976.  https://doi.org/10.1002/2015GL063148 CrossRefGoogle Scholar
  40. Fioletov VE, McLinden CA, Krotkov N, Li C, Joiner J, Theys N, Carn N, Moran M (2016) A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. Atmos Chem Phys 16:11497–11519.  https://doi.org/10.5194/acp-16-11497-2016 CrossRefGoogle Scholar
  41. Flower VJB, Oommen T, Carn SA (2016) Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI). Atmos Meas Tech 9:5487–5498.  https://doi.org/10.5194/amt-9-5487-2016 CrossRefGoogle Scholar
  42. Francalanci L, Tommasini S, Conticelli S, Davies GR (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167(1–2):61–69.  https://doi.org/10.1016/S0012-821X(99)00013-8 CrossRefGoogle Scholar
  43. Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557.  https://doi.org/10.1038/366554a0 CrossRefGoogle Scholar
  44. Ganci G, Vicari A, Cappello A, Del Negro C (2012) An emergent strategy for volcano hazard assessment: from thermal satellite monitoring to lava flow. Remote Sens Environ 119:197–207.  https://doi.org/10.1016/j.rse.2011.12.021 CrossRefGoogle Scholar
  45. Gaudin D, Taddeucci J, Scarlato P, del Bello E, Ricci T, Orr T, Houghton B, Harris A, Rao S, Bucci A (2017) Integrating puffing and explosions in a general scheme for Strombolian-style activity. J Geophys Res Solid Earth 122.  https://doi.org/10.1002/2016JB013707
  46. Global Volcanism Program (1971) Report on Tinakula (Solomon Islands), October 1971. CSLP 1301, 87–71. https://volcano.si.edu/volcano.cfm?vn=256010#bgvn_197110
  47. Global Volcanism Program (2003) Report on Tinakula (Solomon Islands). In: Venzke, E (ed) Bulletin of the global volcanism network, 28:1. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN200301-256010
  48. Global Volcanism Program (2006) Report on Tinakula (Solomon Islands). In: Wunderman, R (ed) Bulletin of the global volcanism network, 31:3. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN200603-256010
  49. Global Volcanism Program (2007) Report on Batu Tara (Indonesia). In: Wunderman, R (ed) Bulletin of the global volcanism network, 32:12. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN200712-264260
  50. Global Volcanism Program (2008) Report on Batu Tara (Indonesia). In: Wunderman, R (ed) Bulletin of the global volcanism network, 33:7. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN200807-264260
  51. Global Volcanism Program (2011) Report on Batu Tara (Indonesia). In: Wunderman, R (ed) Bulletin of the global volcanism network, 36:10. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN201110-264260
  52. Global Volcanism Program (2012) Report on Tinakula (Solomon Islands). In: Wunderman, R (ed) Bulletin of the global volcanism network, 37:6. Smithsonian Institution. 10.5479/si.GVP.BGVN201206-256010Google Scholar
  53. Global Volcanism Program (2013) Volcanoes of the world, v. 4.6.6. Venzke, E (ed) Smithsonian Institution. Downloaded 14 Mar 2018.  https://doi.org/10.5479/si.GVP.VOTW4-2013
  54. Global Volcanism Program (2014) Report on Batu Tara (Indonesia). In: Wunderman, R (ed) Bulletin of the global volcanism network, 39:1. Smithsonian Institution.  https://doi.org/10.5479/si.GVP.BGVN201401-264260
  55. Global Volcanism Program (2016) Report on Batu Tara (Indonesia). In: Venzke, E (ed) Bulletin of the global volcanism network, 41:11. Smithsonian InstitutionGoogle Scholar
  56. Global Volcanism Program (2017) Report on Tinakula (Solomon Islands). In: Sennert, SK (ed) Weekly volcanic activity report, 18 October-24 October 2017. Smithsonian Institution and US Geological SurveyGoogle Scholar
  57. Harris AJL (2013) Thermal remote sensing of active volcanoes. A user’s manual. Cambridge University Press, Cambridge, p 736.  https://doi.org/10.1017/CBO9781139029346 CrossRefGoogle Scholar
  58. Harris AJL, Stevenson D (1997) Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys Res Lett 24(9):1043–1046.  https://doi.org/10.1029/97GL00861 CrossRefGoogle Scholar
  59. Harris AJL, Baloga SM (2009) Lava discharge rates from satellite-measured heat flux. Geophys Res Lett 36:L19302.  https://doi.org/10.1029/2009GL039717 CrossRefGoogle Scholar
  60. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery D (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270CrossRefGoogle Scholar
  61. Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71CrossRefGoogle Scholar
  62. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70(1):1–22.  https://doi.org/10.1007/s00445-007-0120-y CrossRefGoogle Scholar
  63. Harris AJL, Steffke A, Calvari S, Spampinato L (2011) Thirty years of satellite-derived lava discharge rates at Etna: implications for steady volumetric output. J Geophys Res 116:B08204.  https://doi.org/10.1029/2011JB008237 Google Scholar
  64. Harris AJL, Villeneuve N, Di Muro A, Ferrazzini V, Peltier A, Coppola D, Favalli M, Bachèlery P, Froger JL, Gurioli L, Moune S, Vlastélic I, Galle B, Arellano S (2017) Effusive crises at Piton de la Fournaise 2014–2015: a review of a multi-national response model. J Appl Volcanol 6(11).  https://doi.org/10.1186/s13617-017-0062-9
  65. Hayer CS, Wadge G, Edmonds M, Christopher T (2016) Sensitivity of OMI SO2 measurements to variable eruptive behaviour at Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 312:1–10.  https://doi.org/10.1016/j.jvolgeores.2016.01.014 CrossRefGoogle Scholar
  66. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org
  67. Koeppen WC, Pilger E, Wright R (2011) Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach. Bull Volcanol 73(5):577–593.  https://doi.org/10.1007/s00445-010-0427-y CrossRefGoogle Scholar
  68. Kokelaar P, Romagnoli C (1995) Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull Volcanol 57(4):240–262Google Scholar
  69. Krotkov NA, Li C, Leonard P (2014) OMI/Aura sulphur dioxide (SO2) total column daily L2 global gridded 0.125 degree x 0.125 degree V3. Greenbelt: Goddard Earth Sciences Data and Information Services Center (GES DISC): accessed [01032018-10032018]  https://doi.org/10.5067/Aura/OMI/DATA2023
  70. Krueger AJ, Walter LS, Bhartia PK, Schnetzler CC, Krotkov NA, Sprod I, Bluth GJS (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J Geophys Res 100(D7):14057–14056.  https://doi.org/10.1029/95JD01222 CrossRefGoogle Scholar
  71. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182(3–4):255–268CrossRefGoogle Scholar
  72. Li C, Krotkov NA, Carn SA, Zhang Y, Spurr RJD, Joiner J (2017) New-generation NASA Aura Ozone Monitoring Instrument volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite. Atmos Meas Tech 10:445–458.  https://doi.org/10.5194/amt-10-445-2017 CrossRefGoogle Scholar
  73. Machado F (1974) The search for magmatic reservoirs. In: Civetta L, Gasparini P, Luongo G, Rapolla A (eds) Physical volcanology. Elsevier, Amsterdam, pp 255–273CrossRefGoogle Scholar
  74. Marani MP, Gamberi F, Rosi M, Bertagnini A, Di Roberto A (2009) Subaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy). Sedimentology 56:1488–1504.  https://doi.org/10.1111/j.1365-3091.2008.01043.x CrossRefGoogle Scholar
  75. Mastin LG, Lisowski M, Roeloffs E, Beeler N (2008) Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004–2008 history of dome growth and deformation. Geophis Res Lett 36:L20304.  https://doi.org/10.1029/2009GL039863 CrossRefGoogle Scholar
  76. McCormick-Kilbride B, Edmonds M, Biggs J (2016) Observing eruptions of gas-rich, compressible magmas from space. Nat Commun 7:13744.  https://doi.org/10.1038/ncomms13744 CrossRefGoogle Scholar
  77. Métrich N, Bertagnini A, Di Muro A (2009) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626.  https://doi.org/10.1093/petrology/egp083 CrossRefGoogle Scholar
  78. Murphy SW, Wright R, Oppenheimer C, Filho CRS (2013) MODIS and ASTER synergy for characterizing thermal volcanic activity. Remote Sens Environ 131:195–205.  https://doi.org/10.1016/j.rse.2012.12.005 CrossRefGoogle Scholar
  79. NDMO Report (2017) National Disaster Management Office, Solomon Islands, Report No. 2 Tinakula Volcano, 2017.10.26. http://www.ndmo.gov.sb/index.php/situation-report/197-national-situation-report-02-tinakula-volcano
  80. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238CrossRefGoogle Scholar
  81. Oppenheimer C, McGonigle AJS, Allard P, Wooster MJ, Tsanev V (2004) Sulfur, heat, and magma budget of Erta ‘Ale lava lake, Ethiopia. Geology 32(6):509–512.  https://doi.org/10.1130/G20281.1 CrossRefGoogle Scholar
  82. Pallister JS, Major JJ, Pierson TC, Hoblitt RP, Lowenstern JB, Eichelberger JC, Lara L, Moreno H, Muñoz J, Castro JM, Iroumé A, Andreoli A, Jones J, Swanson F, Crisafulli C (2010) Interdisciplinary studies of eruption at Chaitén Volcano, Chile. EOS Transactions 91(42):381–382.  https://doi.org/10.1029/2010EO420001
  83. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121(1):226–232.  https://doi.org/10.1111/j.1365-246X.1995.tb03523.x CrossRefGoogle Scholar
  84. Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135:13–28.  https://doi.org/10.1016/j.jvolgeores.2003.12.018 CrossRefGoogle Scholar
  85. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res 116:B12206.  https://doi.org/10.1029/2011JB008527 CrossRefGoogle Scholar
  86. Pyle DM, Mather TA, Biggs J (2013) Remote sensing of volcanoes and volcanic processes: integrating observation and modelling—introduction. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and modelling. Geological Society, London, Sp Pub 380, pp 1–13.  https://doi.org/10.1144/SP380.14 Google Scholar
  87. Ramsey MS (2016) Synergistic use of satellite thermal detection and science: a decadal perspective using ASTER. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling, and responding to effusive eruptions. Geological Society, London, Sp Pub 426, pp 115–136.  https://doi.org/10.1144/SP426.23 Google Scholar
  88. Ramsey MS, Harris AJL (2013) Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over the next decade? J Volcanol Geotherm Res 249:217–233.  https://doi.org/10.1016/j.jvolgeores.2012.05.011 CrossRefGoogle Scholar
  89. Reath KA, Ramsey MS, Dehn J, Webley PW (2016) Predicting eruptions from precursory activity using remote sensing data hybridization. J Volcanol Geotherm Res 321:18–30.  https://doi.org/10.1016/j.jvolgeores.2016.04.027 CrossRefGoogle Scholar
  90. Ripepe M, Delle Donne D, Harris AJL, Marchetti E, Ulivieri G (2008) Dynamics of Strombolian activity. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano, An Integrated Study of the 2002–2003 Eruption. Am Geophys Union Geophys Mono 182:39–48.  https://doi.org/10.1029/182GM05
  91. Ripepe M, Delle Donne D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P (2015) Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nat Commun 6:6998.  https://doi.org/10.1038/ncomms7998 CrossRefGoogle Scholar
  92. Ripepe M, Pistolesi M, Coppola D, Delle Donne D, Genco R, Lacanna G, Laiolo M, Marchetti E, Ulivieri G, Valade S (2017) Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci Rep 7:3885.  https://doi.org/10.1038/s41598-017-03833-3 CrossRefGoogle Scholar
  93. Rosi M, Bertagnini A, Landi P (2000) Onset of persisting activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300.  https://doi.org/10.1007/s004450000098 CrossRefGoogle Scholar
  94. Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompilio M, Di Roberto A (2013) Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands volcanoes, Geological Society London Memoirs 37(1), chapter 14, The Geological Society of London, pp.473–490.  https://doi.org/10.1144/M37.14.
  95. Rothery D, Coppola D, Saunders C (2005) Analysis of volcanic activity patterns using MODIS thermal alerts. Bull Volcanol 67(6):539–556.  https://doi.org/10.1007/s00445-004-0393-3 CrossRefGoogle Scholar
  96. Scandone R (1979) Effusion rate and energy balance of Paricutín eruption (1943-1952), Michoacán, Mexico. J Volcanol Geotherm Res 6:49–59CrossRefGoogle Scholar
  97. Rowland SK, Harris AJL, Wooster MJ, Garbeil H, Mouginis-Mark PJ, Amelung F, Wilson L (2003) Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data: the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galápagos. Bull Volcanol 65:311–330CrossRefGoogle Scholar
  98. Scandone R (1996) Factors controlling the temporal evolution of explosive eruptions. J Volcanol Geotherm Res 72(1–2):71–83.  https://doi.org/10.1016/0377-0273(95)00086-0 CrossRefGoogle Scholar
  99. Schuth S, Rohrbach A, Munker C, Ballhaus C, Garb-Schonberg D, Qopoto C (2004) Geochemical constraints on the petrogenesis of arco picrites and basalts, New Georgia Group, Solomon Islanda. Contr Mineral Petrol 148:288–304Google Scholar
  100. Schuth S, Münker C, König S, Qopoto C, Basi S, Garbe-Schönberg D, Ballhaus C (2009) Petrogenesis of lavas along the Solomon Island Arc, SW Pacific: coupling of compositional variations and subduction zone geometry. J Petrol 50(5):781–811.  https://doi.org/10.1093/petrology/egp019 CrossRefGoogle Scholar
  101. Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys 46(4):RG4005.  https://doi.org/10.1029/2007RG000244 CrossRefGoogle Scholar
  102. Spera F (1984) Some numerical experiments on the withdrawal of magma from crustal reservoirs. J Geophys Res 89:8222–8236CrossRefGoogle Scholar
  103. Stasiuk MV, Jaupart C, Sparks RSJ (1993) Influence of cooling on lava-flow dynamics. Geology 21:335–338CrossRefGoogle Scholar
  104. Steffke AM, Harris AJL, Burton M, Caltabiano T, Salerno GG (2011) Coupled use of COSPEC and satellite measurements to define the volumetric balance during effusive eruptions at Mt. Etna, Italy. J Volcanol Geotherm Res 205(1–2):47–53.  https://doi.org/10.1016/j.jvolgeores.2010.06.004 CrossRefGoogle Scholar
  105. Theys N, Campion R, Clarisse L, Brenot H, van Gent J, Dils B, Corradini S, Merucci L, Coheur P-F, Van Roozendael M, Hurtmans D, Clerbaux C, Tait S, Ferrucci F (2013) Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos Chem Phys 13:5945–5968.  https://doi.org/10.5194/acp-13-5945-2013 CrossRefGoogle Scholar
  106. Tibaldi A (2001) Multiple sector collapses at stromboli volcano, Italy: how they work. Bull Volcanol 63(2–3):112–125.  https://doi.org/10.1007/s004450100
  107. Valade S, Lacanna G, Coppola D, Laiolo M, Pistolesi M, Delle Donne D, Genco R, Marchetti E, Ulivieri G, Allocca C, Cigolini C, Nishimura T, Poggi P, Ripepe M (2016) Tracking dynamics of magma migration in open-conduit systems. Bull Volcanol 78(11).  https://doi.org/10.1007/s00445-016-1072-x
  108. Van Bergen MJ, Vroon PZ, Varekamp JC, Poorter RPE (1992) The origin of the potassic rock suite from Batu Tara volcano (East Sunda Arc, Indonesia). Lithos 28(3–6):261–282.  https://doi.org/10.1016/0024-4937(92)90010-V CrossRefGoogle Scholar
  109. Vaughan RG, Keszthelyi LP, Lowenstern JB, Jaworowski C, Heasler H (2012) Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. J Volcanol Geotherm Res 233–234:72–89.  https://doi.org/10.1016/j.jvolgeores.2012.04.022 CrossRefGoogle Scholar
  110. Ventura G (2013) Kinematics of the Aeolian volcanism (Southern Tyrrhenian sea) from geophysical and geological data. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds.) The Aeolian Islands volcanoes, Geological Society London Memoirs 37(1), chapter 2, The Geological Society of London, pp.3–11.  https://doi.org/10.1144/M37.2
  111. Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11(2–4):139–168.  https://doi.org/10.1016/0377-0273(81)90020-2 CrossRefGoogle Scholar
  112. Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens Environ 86:83–107.  https://doi.org/10.1016/S0034-4257(03)00070-1 CrossRefGoogle Scholar
  113. Wright R, Carn SA, Flynn LP (2005) A satellite chronology of the May–June 2003 eruption of Anatahan volcano. J Volcanol Geotherm Res 146(1–3):102–116.  https://doi.org/10.1016/j.jvolgeores.2004.10.021 CrossRefGoogle Scholar
  114. Wright R, Blackett M, Hill-Butler C (2015) Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys Res Lett 4:282–289.  https://doi.org/10.1002/2014GL061997 CrossRefGoogle Scholar
  115. Zakšek K, Hort M, Lorenz E (2015) Satellite and ground based thermal observation of the 2014 effusive eruption at Stromboli Volcano. Remote Sens 7:17190–17211.  https://doi.org/10.3390/rs71215876 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Laiolo
    • 1
    • 2
  • F. Massimetti
    • 1
  • C. Cigolini
    • 2
  • M. Ripepe
    • 1
  • D. Coppola
    • 2
  1. 1.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  2. 2.Dipartimento di Scienze della TerraUniversità di TorinoTurinItaly

Personalised recommendations