Advertisement

Parameterizing multi-vent activity at Stromboli Volcano (Aeolian Islands, Italy)

  • Valentino Salvatore
  • Aurora Silleni
  • Davide Corneli
  • Jacopo Taddeucci
  • Danilo M. Palladino
  • Gianluca Sottili
  • Danilo Bernini
  • Daniele Andronico
  • Antonio Cristaldi
Research Article

Abstract

The crater terrace of Stromboli Volcano (Italy) hosts several active vents which have evolved and migrated through time within three main vent areas: south-west (SW), central (C), and north-east (NE). Frequent, jet-like explosions typically take place, episodically interrupted by larger-scale paroxysms, which can substantially modify the morphology of the crater terrace and vent geometries. However, the link between the time-space evolution of vent activity and the shallow conduit system are still a matter of debate. In this work, we analyze the vent position and explosion parameters (jet duration and geometry) of 4296 events at Stromboli in five 72-h-long time-windows between 2005 and 2009, as recorded by an infrared surveillance camera. Vent locations illustrate the resilience of the shallow conduit system, which controls explosive activity at different time scales and depths. At the shallowest depth, where slugs burst, conduit branching and merging determines the evolution of simultaneous or alternating twin vents, while vent shape and slug size control local explosion parameters. These processes show variability on an hourly to daily time scale. Below the depth of the slug burst, the conduit system feeding each vent area controls which specific vent will host the explosions and also, possibly, the size of the slugs. Several observations suggest that the C and SW vent areas may be connected at this depth. The deeper conduit system, common to all vent areas, sets the overall explosion rate of the volcano and maintains a balance of this rate between the NE and the combined SW and C vent areas.

Keywords

Stromboli Strombolian explosions Crater terrace Vent migration Explosion parameters Conduit system 

Notes

Acknowledgements

We acknowledge Karoly Németh and two anonymous reviewers, as well as the handling editor (Josef Dufek) for the helpful comments that significantly improved the manuscript.

Funding information

This work was partially funded by the Italian “Dipartimento della Protezione Civile” in the frame of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia – INGV (Project V2 “Paroxysm”).

Supplementary material

445_2018_1239_MOESM1_ESM.pdf (3.7 mb)
ESM 1 (PDF 3794 kb)

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42 http://www.imagescience.org/meijering/publications/download/bio2004.pdf Google Scholar
  2. Aiuppa A, Federico C, Giudice G, Giuffrida G, Guida R, Gurrieri S, Liuzzo M, Moretti R, Papale P (2009) The 2007 eruption of Stromboli Volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182:221–230.  https://doi.org/10.1016/j.jvolgeores.2008.09.013 CrossRefGoogle Scholar
  3. Andronico D, Pistolesi M (2010) The November 2009 paroxysmal explosions at Stromboli. J Volcanol Geotherm Res 196:120–125.  https://doi.org/10.1016/j.jvolgeores.2010.06.005 CrossRefGoogle Scholar
  4. Andronico D, Corsaro RA, Cristaldi A, Polacci M (2008) Characterizing high energy explosive eruptions at Stromboli Volcano using multidisciplinary data: an example from the 9 January 2005 explosion. J Volcanol Geotherm Res 176:541–550.  https://doi.org/10.1016/j.jvolgeores.2008.05.011 CrossRefGoogle Scholar
  5. Andronico D, Taddeucci J, Cristaldi A, Miraglia M, Scarlato P, Gaeta M (2013) The 15 March 2007 paroxysm of Stromboli: video-image analysis, and textural and compositional features of the erupted deposit. Bull Volcanol 75:1–19.  https://doi.org/10.1007/s00445-013-0733-2 CrossRefGoogle Scholar
  6. Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245.  https://doi.org/10.1016/j.jvolgeores.2006.06.008 CrossRefGoogle Scholar
  7. Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187Google Scholar
  8. Barberi F, Civetta L, Rosi M, Scandone R (2009) Chronology of the 2007 eruption of Stromboli and the activity of the Scientific Synthesis Group. J Volcanol Geotherm Res 182:123–130.  https://doi.org/10.1016/j.jvolgeores.2008.09.019 CrossRefGoogle Scholar
  9. Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamics of Stromboli Volcano. EOS Trans AGU 80:633–636.  https://doi.org/10.1029/99EO00415 CrossRefGoogle Scholar
  10. Bertagnini A, Métrich N, Francalanci L, Landi P, Tommasini S, Conticelli S (2008) Volcanology and magma geochemistry of the present-day activity: constraints on the feeding system. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption. Am Geophys Union Geophys Mon 182:19–37.  https://doi.org/10.1029/182GM04
  11. Blackburn EA, Wilson L, Sparks RSJ (1976) Mechanisms and dynamics of Strombolian activity. J Geol Soc Lond 132:429–440.  https://doi.org/10.1144/gsjgs.132.4.0429 CrossRefGoogle Scholar
  12. Boccaletti M, Nicolich R, Tortorici L (1984) The Calabrian Arc and the Ionian Sea in the dynamic evolution of the Central Mediterranean. Mar Geol 55:219–240.  https://doi.org/10.1016/0025-3227(84)90070-7 CrossRefGoogle Scholar
  13. Bombrun M, Harris A, Gurioli L, Battaglia J, Barra V (2015) Anatomy of a strombolian eruption: inferences from particle data recorded with thermal video. J Geophys Res 120:2367–2387.  https://doi.org/10.1002/2014JB011556 CrossRefGoogle Scholar
  14. Bonaccorso A, Calvari S, Garfì G, Lodato L, Patanè D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli Volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30:1941–1944.  https://doi.org/10.1029/2003GL017702 CrossRefGoogle Scholar
  15. Bosman A, Chiocci FL, Romagnoli C (2009) Morpho-structural setting of Stromboli Volcano revealed by high-resolution bathymetry and backscatter data of its submarine portions. Bull Volcanol 71:1007–1019.  https://doi.org/10.1007/s00445-009-0279-5 CrossRefGoogle Scholar
  16. Brenna M, Németh K, Cronin SJ, Sohn YK, Smith IEM, Wijbrans J (2015) Co-located monogenetic eruptions ~200 kyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea. Bull Volcanol 77:43.  https://doi.org/10.1007/s00445-015-0928-9 CrossRefGoogle Scholar
  17. Burton M, Allard P, Muré F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227–230.  https://doi.org/10.1126/science.1141900 CrossRefGoogle Scholar
  18. Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli Volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J Geophys Res 110:B02201.  https://doi.org/10.1029/2004JB003129 Google Scholar
  19. Calvari S, Lodato L, Steffke A, Cristaldi A, Harris AJL, Spampinato L, Boschi E (2010) The 2007 Stromboli eruption: event chronology and effusion rates using thermal infrared data. J Geophys Res 115:B04201.  https://doi.org/10.1029/2009JB006478 CrossRefGoogle Scholar
  20. Calvari S, Bonaccorso A, Madonia P, Neri M, Liuzzo M, Salerno GG, Behncke B, Caltabiano T, Cristaldi A, Giuffrida G, La Spina A, Marotta E, Ricci T, Spampinato L (2014) Major eruptive style changes induced by structural modifications of a shallow conduit system: the 2007–2012 Stromboli case. Bull Volcanol 76:841.  https://doi.org/10.1007/s00445-014-0841-7 CrossRefGoogle Scholar
  21. Cannata A, Sciotto M, Spampinato L, Spina L (2011) Insights into explosive activity at closely-spaced eruptive vents using infrasound signals: example of Mt. Etna 2008 eruption. J Volcanol Geotherm Res 208:1–11.  https://doi.org/10.1016/j.jvolgeores.2011.09.003 CrossRefGoogle Scholar
  22. Capponi A, Taddeucci J, Scarlato P, Palladino DM (2016) Recycled ejecta modulating Strombolian explosions. Bull Volcanol 78:1–13.  https://doi.org/10.1007/s00445-016-1001-z CrossRefGoogle Scholar
  23. Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620.  https://doi.org/10.1029/2004GL019614 CrossRefGoogle Scholar
  24. Cashman KV, Sparks RSJ (2013) How volcanoes work: a 25 year perspective. Geol Soc Am Bull 125:664–690.  https://doi.org/10.1130/B30720.1 CrossRefGoogle Scholar
  25. Chouet B, Hamisevicz N, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79:4961–4976.  https://doi.org/10.1029/JB079i032p04961 CrossRefGoogle Scholar
  26. Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108:2019.  https://doi.org/10.1029/2002JB001919 CrossRefGoogle Scholar
  27. Chouet B, Dawson P, Martini M (2008) Shallow-conduit dynamics at Stromboli Volcano, Italy, imaged from waveform inversions. In: Lane SJ, Gilbert JS (Eds.) Fluid motions in volcanic conduits: a source of seismic and acoustic signals. Geol Soc London Spec Pub 307:57–84.  https://doi.org/10.1144/SP307.5
  28. Chouet BA, Dawson PB, James M, Lane SJ (2010) Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: results from waveform inversion in the 10–50 s band. J Geophys Res 115:B09311.  https://doi.org/10.1029/2009JB006661 CrossRefGoogle Scholar
  29. De Astis G, Ventura G, Vilardo G (2003) Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological, and geochemical data. Tectonics 22:1040.  https://doi.org/10.1029/2003TC001506 CrossRefGoogle Scholar
  30. Del Bello E, Llewellin EW, Taddeucci J, Scarlato P, Lane SJ (2012) An analytical model for gas overpressure in slug-driven explosions: insights into Strombolian volcanic eruptions. J Geophys Res 117:B02206.  https://doi.org/10.1029/2011JB008747 Google Scholar
  31. Del Bello E, Lane SJ, James MR, Llewellin EW, Taddeucci J, Scarlato P, Capponi A (2015) Viscous plugging can enhance and modulate explosivity of strombolian eruptions. Earth Planet Sc Lett 423:210–218.  https://doi.org/10.1016/j.epsl.2015.04.034 CrossRefGoogle Scholar
  32. Delle Donne D, Ripepe M (2012) High-frame rate thermal imagery of Strombolian explosions: implications for explosive and infrasonic source dynamics. J Geophys Res 117:B09206.  https://doi.org/10.1029/2011JB008987 CrossRefGoogle Scholar
  33. Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73:295–320.  https://doi.org/10.1007/s00445-010-0417-0 CrossRefGoogle Scholar
  34. Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211.  https://doi.org/10.1016/S0377-0273(03)00362-7 CrossRefGoogle Scholar
  35. Francalanci L, Davies GR, Lustenmhower W, Tommasini S, Mason PRD, Conticelli S (2005) Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli Volcano, Southern Italy. J Petrol 46:1997–2021.  https://doi.org/10.1093/petrology/egi045 CrossRefGoogle Scholar
  36. Gaudin D, Taddeucci J, Scarlato P, Moroni M, Freda C, Gaeta M, Palladino DM (2014) Pyroclast tracking velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. J Geophys Res 119:5384–5397.  https://doi.org/10.1002/2014JB011096 CrossRefGoogle Scholar
  37. Geshi N, Kusumoto S, Gudmundsson A (2010) Geometric difference between non-feeder and feeder dikes. Geology 38:195–198.  https://doi.org/10.1130/G30350.1 CrossRefGoogle Scholar
  38. Geshi N, Németh K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano. Jpn J Volcanol Geotherm Res 20:30–38.  https://doi.org/10.1016/j.jvolgeores.2010.11.012 CrossRefGoogle Scholar
  39. Graettinger AH, Valentine GA, Sonder I (2015) Circum-crater variability of deposits from discrete, laterally and vertically migrating volcanic explosions: experimental evidence and field implications. J Volcanol Geotherm Res 308:61–69.  https://doi.org/10.1016/j.jvolgeores.2015.10.019 CrossRefGoogle Scholar
  40. Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013) Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology 41:559–562.  https://doi.org/10.1130/G33967.1 CrossRefGoogle Scholar
  41. Gurioli L, Colò L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of Strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli Volcano. J Geophys Res 119:319–345.  https://doi.org/10.1002/2013JB010355 CrossRefGoogle Scholar
  42. Harris AJL, Ripepe M (2007a) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112:B03205.  https://doi.org/10.1029/2006JB004393 Google Scholar
  43. Harris AJL, Ripepe M (2007b) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chemie der Erde –Geochem 67:1–35.  https://doi.org/10.1016/j.chemer.2007.01.003 CrossRefGoogle Scholar
  44. Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chemie der Erde – Geochem 68:117–140.  https://doi.org/10.1016/j.chemer.2008.04.002 CrossRefGoogle Scholar
  45. Inguaggiato S, Vita F, Rouwet D, Bobrowski N, Morici S, Sollami A (2011) Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: the 2007 Stromboli eruption (Italy). Bull Volcanol 73:443–456.  https://doi.org/10.1007/s00445-010-0442-z CrossRefGoogle Scholar
  46. James MR, Lane SJ, Chouet B, Gilbert JS (2004) Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits. J Volcanol Geotherm Res 129:61–82.  https://doi.org/10.1016/S0377-0273(03)00232-4 CrossRefGoogle Scholar
  47. James MR, Lane SJ, Wilson L, Corder SB (2009) Degassing at low magma-viscosity volcanoes: quantifying the transition between passive bubble-burst and Strombolian eruption. J Volcanol Geotherm Res 180:81–88.  https://doi.org/10.1016/j.jvolgeores.2008.09.002 CrossRefGoogle Scholar
  48. Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60.  https://doi.org/10.1038/331058a0 CrossRefGoogle Scholar
  49. Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582.  https://doi.org/10.1007/s00445-007-0154-1 CrossRefGoogle Scholar
  50. Kereszturi G, Jordan G, Németh K, Dóniz-Páez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74:2171–2185.  https://doi.org/10.1007/s00445-012-0658-1 CrossRefGoogle Scholar
  51. Kósik S, Németh K, Kereszturi G, Procter JN, Zellmer GF, Geshi N (2016) Phreatomagmatic and water-influenced Strombolian eruptions of a small-volume parasitic cone complex on the southern ringplain of Mt. Ruapehu, New Zealand: facies architecture and eruption mechanisms of the Ohakune Volcanic Complex controlled by an unstable fissure eruption. J Volcanol Geotherm Res 327:99–115 doi.org/10.1016/j.jvolgeores.2016.07.005 CrossRefGoogle Scholar
  52. Landi P, Métrich N, Bertagnini A, Rosi M (2008) Recycling and “re-hydratation” of degassed magma inducing transient dissolution/crystallization events at Stromboli (Italy). J Volcanol Geotherm Res 174:325–336.  https://doi.org/10.1016/j.jvolgeores.2008.02.013 CrossRefGoogle Scholar
  53. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182:255–268.  https://doi.org/10.1016/j.jvolgeores.2008.11.010 CrossRefGoogle Scholar
  54. Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli Volcano, Italy. Geophys Res Lett 38:L08305.  https://doi.org/10.1029/2010GL046296 CrossRefGoogle Scholar
  55. Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli Volcano, Italy. Geology 33:425–428.  https://doi.org/10.1130/G21325.1 CrossRefGoogle Scholar
  56. Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli Volcano, Italy. Bull Volcanol 69:445–460.  https://doi.org/10.1007/s00445-006-0086-1 CrossRefGoogle Scholar
  57. Leduc L, Gurioli L, Harris A, Colò L, Rose-Koga EF (2015) Types and mechanisms of strombolian explosions: characterization of a gas-dominated explosion at Stromboli. Bull Volcanol 77:1–15.  https://doi.org/10.1007/s00445-014-0888-5 CrossRefGoogle Scholar
  58. Marchetti E, Harris AJL (2008) Trends in activity at Pu’u ’O’o during 2001–2003: insights from the continuous thermal record. In: Lane SJ and Gilbert JS (eds) Fluid motions in volcanic conduits: a source of seismic and acoustic signals. Geol Soc London Spec Pub 307:85–101.  https://doi.org/10.1144/SP307.6
  59. Marchetti E, Ripepe M (2005) Stability of the seismic source during effusive and explosive activity at Stromboli Volcano. Geophys Res Lett 32:L03307.  https://doi.org/10.1029/2004GL021406 CrossRefGoogle Scholar
  60. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626.  https://doi.org/10.1093/petrology/egp083 CrossRefGoogle Scholar
  61. Németh K, Cronin SJ (2011) Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J Volcanol Geotherm Res 201:194–209.  https://doi.org/10.1016/j.jvolgeores.2010.12.007 CrossRefGoogle Scholar
  62. Neri M, Lanzafame G (2009) Structural features of the 2007 Stromboli eruption. J Volcanol Geotherm Res 182:137–144.  https://doi.org/10.1016/j.jvolgeores.2008.07.021 CrossRefGoogle Scholar
  63. Oppenheimer C, Bani P, Calkins JA, Burton MR, Sawyer GM (2006) Rapid FTIR sensing of volcanic gases released by Strombolian explosions at Yasur volcano, Vanuatu. Appl Phys B Lasers Opt 85:453–460.  https://doi.org/10.1007/s00340-006-2353-4 CrossRefGoogle Scholar
  64. Ort MH, Carrasco-Núñez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181:67–77.  https://doi.org/10.1016/j.jvolgeores.2009.01.003 CrossRefGoogle Scholar
  65. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107.  https://doi.org/10.1016/j.jvolgeores.2004.01.002 CrossRefGoogle Scholar
  66. Parfitt EA, Wilson L (1995) Explosive volcanic-eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232.  https://doi.org/10.1111/j.1365-246X.1995.tb03523.x CrossRefGoogle Scholar
  67. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784.  https://doi.org/10.1007/s00445-006-0107-0 CrossRefGoogle Scholar
  68. Peccerillo A (2001) Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral Petrol 73:93–105.  https://doi.org/10.1007/s007100170012 CrossRefGoogle Scholar
  69. Pedrazzi D, Bolós X, Barde-Cabusson S, Martí J (2016) Reconstructing the eruptive history of a monogenetic volcano through a combination of fieldwork and geophysical surveys: the example of Puig d’Àdri (Garrotxa Volcanic Field). J Geol Soc Lond 173:875–888.  https://doi.org/10.1144/jgs2016-009 CrossRefGoogle Scholar
  70. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli Volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res 116:B12206.  https://doi.org/10.1029/2011JB008527 CrossRefGoogle Scholar
  71. Renzulli A, Del Moro S, Menna M, Landi P, Piermattei M (2009) Transient processes in Stromboli’s shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm. Bull Volcanol 71:795–813.  https://doi.org/10.1007/s00445-009-0265-y CrossRefGoogle Scholar
  72. Ripepe M (1996) Evidence for gas influence on volcanic seismic signals at Stromboli. J Volcanol Geotherm Res 70:221–233.  https://doi.org/10.1016/0377-0273(95)00057-7 CrossRefGoogle Scholar
  73. Ripepe M, Rossi M, Saccorotti G (1993) Image processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54:335–351.  https://doi.org/10.1016/0377-0273(93)90071-X CrossRefGoogle Scholar
  74. Ripepe M, Poggi P, Braun T, Gordeev E (1996) Infrasonic waves and volcanic tremor at Stromboli. Geophys Res Lett 23:181–184.  https://doi.org/10.1029/95GL03662 CrossRefGoogle Scholar
  75. Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106:8713–8727.  https://doi.org/10.1029/2000JB900374 CrossRefGoogle Scholar
  76. Ripepe M, Harris AJL, Carniel R (2002) Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli Volcano. J Volcanol Geotherm Res 118:285–297.  https://doi.org/10.1016/S0377-0273(02)00298-6 CrossRefGoogle Scholar
  77. Ripepe M, Harris AJL, Marchetti E (2005) Coupled thermal oscillations in explosive activity at different craters of Stromboli Volcano. Geophys Res Lett 32:L17302.  https://doi.org/10.1029/2005GL022711 CrossRefGoogle Scholar
  78. Ripepe M, Marchetti D, Ulivieri G (2007) Infrasonic monitoring at Stromboli Volcano during the 2003 effusive eruption: insights on the explosive and degassing process of an open conduit system. J Geophys Res 112:B09207.  https://doi.org/10.1029/2006JB004613 CrossRefGoogle Scholar
  79. Ripepe M, Delle Donne D, Lacanna G, Marchetti E, Ulivieri G (2009) The onset of the 2007 Stromboli effusive eruption recorded by an integrated geophysical network. J Volcanol Geotherm Res 182:131–136.  https://doi.org/10.1016/j.jvolgeores.2009.02.011 CrossRefGoogle Scholar
  80. Ripepe M, Delle Donne D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P (2015) Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nat Commun 6:6998.  https://doi.org/10.1038/ncomms7998 CrossRefGoogle Scholar
  81. Rittmann A (1931) Der Ausbruch des Stromboli am 11 September 1930. Zeits Vulkanol 14:47–77Google Scholar
  82. Rosi M (1980) The island of Stromboli. Rend Soc Ital Mineral Petrol 36:345–368Google Scholar
  83. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300.  https://doi.org/10.1007/s004450000098 CrossRefGoogle Scholar
  84. Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sc Lett 243:594–606.  https://doi.org/10.1016/j.epsl.2006.01.035 CrossRefGoogle Scholar
  85. Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompilio M, Di Roberto A (2013) Stromboli Volcano, Aeolian Islands (Italy): present eruptive activity and hazards. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands volcanoes. Geol Soc Lond Mem 37:473–490.  https://doi.org/10.1144/M37.14
  86. Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355.  https://doi.org/10.1007/s004450050196 CrossRefGoogle Scholar
  87. Settle M, McGetchin TR (1980) Statistical analysis of persistent explosive activity at Stromboli, 1971: implications for eruption prediction. J Volcanol Geotherm Res 8:45–58.  https://doi.org/10.1016/0377-0273(80)90006-2 CrossRefGoogle Scholar
  88. Sohn YK, Park KH (2005) Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequences of substrate collapse and vent migration. J Volcanol Geotherm Res 141:157–175.  https://doi.org/10.1016/j.jvolgeores.2004.10.003 CrossRefGoogle Scholar
  89. Spampinato L, Calvari S, Oppenheimer C, Lodato L (2008) Shallow magma transport for the 2002–03 Mt. Etna eruption inferred from thermal infrared surveys. J Volcanol Geoth Res 177:301–312.  https://doi.org/10.1016/j.jvolgeores.2008.05.013 CrossRefGoogle Scholar
  90. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37.  https://doi.org/10.1016/0377-0273(78)90002-1 CrossRefGoogle Scholar
  91. Taddeucci J, Scarlato P, Capponi A, Del Bello E, Cimarelli C, Palladino D, Kueppers U (2012) High-speed imaging of Strombolian explosions: the ejection velocity of pyroclasts. Geophys Res Lett 39:L02301.  https://doi.org/10.1029/2011GL050404 Google Scholar
  92. Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013a) The effect of pre-existing craters on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510.  https://doi.org/10.1002/grl.50176 CrossRefGoogle Scholar
  93. Taddeucci J, Palladino DM, Sottili G, Bernini D, Andronico D, Cristaldi A (2013b) Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy). Geophys Res Lett 40:3384–3388.  https://doi.org/10.1002/grl.50652 CrossRefGoogle Scholar
  94. Taddeucci J, Edmonds M, Houghton B, James MR, Vergniolle S (2015) Hawaiian and Strombolian eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) The encyclopedia of volcanoes 2nd edn. Academic Press, Amsterdam, pp 485–503.  https://doi.org/10.1016/B978-0-12-385938-9.00027-4 CrossRefGoogle Scholar
  95. Vaggelli G, Francalanci L, Ruggieri G, Testi S (2003) Persistent polybaric rests of calc-alkaline magmas at Stromboli Volcano, Italy: pressure data from fluid inclusions in restitic quartzite nodules. Bull Volcanol 65:385–404.  https://doi.org/10.1007/s00445-002-0264-8 CrossRefGoogle Scholar
  96. Valade S, Lacanna G, Coppola D, Laiolo M, Pistolesi M, Delle Donne D, Genco R, Marchetti E, Ulivieri G, Allocca C, Cigolini C, Nishimura T, Poggi P, Ripepe M (2016) Tracking dynamics of magma migration in open-conduit systems. Bull Volcanol 78:78.  https://doi.org/10.1007/s00445-016-1072-x CrossRefGoogle Scholar
  97. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873.  https://doi.org/10.1016/j.jvolgeores.2008.01.050 CrossRefGoogle Scholar
  98. Wadsworth FB, Kennedy BM, Branney MJ, von Aulock FW, Lavallée Y, Menendez A (2015) Exhumed conduit records magma ascent and drain-back during a Strombolian eruption at Tongariro Volcano, New Zealand. Bull Volcanol 77:71.  https://doi.org/10.1007/s00445-015-0962-7 CrossRefGoogle Scholar
  99. Waite GP, Nadeau PA, Lyons JJ (2013) Variability in eruption style and associated very long period events at Fuego Volcano, Guatemala. J Geophys Res 118:1526–1533.  https://doi.org/10.1002/jgrb.50075 CrossRefGoogle Scholar
  100. Washington HS (1917) Persistence of vents at Stromboli and its bearing on volcanic bearing. Geol Soc Am Bull 28:249–278.  https://doi.org/10.1130/GSAB-28-249 CrossRefGoogle Scholar
  101. Zanon V, Neri M, Pecora E (2009) Interpretation of data from the monitoring thermal camera of Stromboli Volcano (Aeolian Islands, Italy). Geol Mag 146:591–601.  https://doi.org/10.1017/S0016756809005937 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Valentino Salvatore
    • 1
  • Aurora Silleni
    • 1
    • 2
  • Davide Corneli
    • 1
  • Jacopo Taddeucci
    • 3
  • Danilo M. Palladino
    • 1
  • Gianluca Sottili
    • 1
  • Danilo Bernini
    • 1
  • Daniele Andronico
    • 4
  • Antonio Cristaldi
    • 4
  1. 1.Dipartimento di Scienze della TerraSapienza - Università di RomaRomeItaly
  2. 2.Dipartimento di ScienzeUniversità di Roma TreRomeItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia, Sez. Roma1RomeItaly
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio EtneoCataniaItaly

Personalised recommendations