Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

First study of the heat and gas budget for Sirung volcano, Indonesia


With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, ~17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, ~11 Gg of H2S, ~17 Gg of CO2, and ~550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydrothermal fluid-rock interactions and sulfide depositions, initiated by the disproportionation of SO2. These processes lead to distinct gas compositions and changing lake water chemistry (in the sub-craters and the main crater lake). However, the occurrence of SO2-rich fluids and strong gas flux appear to highlight a rapid fluid transfer to surface, avoiding re-equilibration with lower temperature rocks/fluids in the conduits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Aiuppa A, Giudice G, Liuzzo M, Tamburello G, Allard P, Calabrese S, Chaplygin I, McGonigle AJS, Taran Y (2012) First volatile inventory for Gorely volcano, Kamchatka. Geophys Res Lett 39:L06307. doi:10.1029/2012GL051177

  2. Aiuppa A, Tamburello G, Di Napoli R, Cardellini C, Chiodini G, Giudice G, Grassa F, Pedone M (2013) First observations of the fumarolic gas output froma restless caldera: implications for the current period of unrest (2005–2013) at Campi Flegrei. Geochem Geophys Geosyst 14:4153–4169

  3. Aiuppa A, Bani P, Moussallam Y, Di Napoli R, Allard P, Gunawan H, Hendrasto M, Tamburello G (2015) First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). J Volcanol Geotherm Res 304:206–213

  4. Alfianti H (2015) Laporan, Pemantauan Kegiatan Gunungapi Sirung, Nusa Tenggara Timur. Pusat Vulkanologi dan Mitigasi Bencana Geologi, 30 pp

  5. Andres RJ, Kasgnoc AD (1998) A time-average inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25251–25261

  6. Bani P, Oppenheimer C, Varekamp JC, Quinou T, Lardy M, Carn S (2009) Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu. J Volcanol Geotherm Re 188:347–357

  7. Bani P, Surono, Hendrasto M, Gunawan H, Primulyana S (2013) Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes. Nat Hazards Earth Syst Sci 13:2399–2407. doi:10.5194/nhess-13-2399-2013

  8. Bani P, Boudon G, Balcone-Boissard H, Delmelle P, Quiniou T, Lefèvre J, Garaebiti BE, Shinohara H, Lardy M (2016) The 2009-2010 eruption of Gaua volcano (Vanuatu archipelago): eruptive dynamics and unsuspected strong halogens source. J Volcanol Geotherm Res 322:63–75. doi:10.1016/j.jvolgeores.2015.06.023

  9. Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann OC, Vogel A, Harmann M, Kromminga H, Bovensmann H, Frerick J, Burrows JP (2003) Measurements of molecular absorption spectra with SCIAMACHY preflight model: instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region. J Photochem Photobiol A Chem 157:167–184

  10. Bowin C, Purdy GM, Johnston C, Shor GG, Lawver L, Hartono HMS, Jezek P (1980) Arc continent collision in Banda Sea region. Am Assoc Pet Geol Bull 64:868–915

  11. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poas crater lake: implications for predicting volcanic activity. Nature 339:370–373

  12. Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:44095. doi:10.1038/srep44095

  13. Chamalaun FH, Lockwood K, White A (1976) The Bouguer gravity field of eastern Timor. Tectonophysics 30:241–259

  14. Christensen BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system

  15. Data Dasar Gunung api Indonesia (2011) Kementerian Energi dan Sumber daya Mineral, Badan Geologi. edisi kedua, 208–219

  16. Delmelle P, Bernard A (1994) Geochemistry, mineralogy and chemical modeling of the acid crater lake of Kawah Ijen volcano, Indonesia. Geochem Cosmochim Acta 58:2445–2460

  17. Delmelle P, Bernard A, Kusakabe M, Fischer TP, Takano B (2000a) Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97:31–53

  18. Delmelle P, Bernard A (2000b) Volcanic Lakes. In: Sirgurdsson H, Houghto BF, McNutt SR, Rymer H, Stix J (Eds.), Encyclopedia of volcanoes. Academic Press, San Diego, pp. 877–895

  19. de Moor JM, Aiuppa A, Avard G, Wehrmann H, Dunbar N, Muller C, Tamburello G, Giudice G, Liuzzo R, Moretti R, Conde V, Galle B (2016a) Turrialba volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J Geophys Res Solid Earth 121:5761–5775. doi:10.1002/2016JB013150

  20. de Moor JM, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martinez M, Giudice G, Fisher TP (2016b) Short-period volcanic gas precursors to phreatic eruptions: insights from Poas volcano, Costa Rica. Earth Planet Sci Lett 442:218–227

  21. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D.C.

  22. Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232. doi:10.1038/nature10460

  23. Giggenbach WF, Glover RB (1975) The use of chemical indicators in the surveillance of volcanic activity affecting the crater lake on Mt. Ruapehu, New Zealand. Bull Volcanol 39:1–12

  24. Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 737–796

  25. Global Volcanism Program (2012) Report on Sirung (Indonesia). In: Sennert SK (ed.) Weekly Volcanic Activity Report, 9 May-15 May 2012. Smithsonian Institution and US Geological Survey

  26. Global Volcanism Program (2013) Sirung (264270) in Volcanoes of the World, v. 4.5.0. Venzke E (ed.). Smithsonian Institution. Downloaded 30 Aug 2016 (

  27. Global Volcanism Program (2015) Report on Sirung (Indonesia). In: Sennert SK (ed.) Weekly Volcanic activity report, 8 July-14 July 2015. Smithsonian Institution and US Geological Survey

  28. Hadikusumo D (1961) Bulletin of Volcanological Survey of Indonesia for the period 1950–1957, 100 pp

  29. Hamilton W (1979) Tectonics of the Indonesian region. U.S. Geol. Surv.. Prof. Pap. 1078, 345 pp

  30. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge 728 pp

  31. Hernandez PA, Perez NM, Varekamp JC, Henriquez B, Hernandez A, Barrancos J, Padron E, Calvo D, Melian G (2007) Crater lake temperature changes of the 2005 eruption of Santa Ana volcano, El Salvador, Central America. Pure Appl Geophys 164:2507–2522. doi:10.1007/s00024-007-0275-7

  32. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47

  33. Hoblitt RP, Harmon RS (1993) Bimodal density distribution of cryptodome dacite from the 1980 eruption of Mount St. Helens, Washington. Bull Volcanol 55:421–437. doi:10.1007/BF00302002

  34. Holland HD (1965) Some applications of thermochemical data to problems of ore deposits: II. Mineral assemblages and the compositions of ore-forming fluids. Econ Geol 60:1101–1166

  35. Johnson DM, Hooper PR, Conrey RM (1999) XRF analysus of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. JCPDS-International Centre for Diffraction Data

  36. Lukanin OA (2015) Chlorine partitioning between melt and aqueous chloride fluid during granite magma. Degassing I. Decompression induced melt degassing. Geochem Int 53:786–810

  37. Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. J Geophys Res 110:B02209. doi:10.1029/2004JB003183

  38. Nho EY, Le Cloarec M-F, Ardouin B, Tjetjep WS (1996) Source strength assessment of volcanic trace elements emitted from the Indonesian arc. J Volcanol Geotherm Res 74:121–129

  39. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

  40. Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538

  41. Petroeschevsky WA, Klompe THF (1950) Het vulkanologisch onderzoek in Indonesia. Chron Nat 106:187–204

  42. Petroeschevsky WA (1953) The volcanic activity in Indonesia during the period of 1942–1948. Commun. Volcanol. Surv. Indonesia, I: 17–30

  43. Pfeffer MA (2007) The relative influences of volcanic and anthropogenic emissions on air pollution in indonesia as studied with a regional atmospheric chemistry and climate model. Reports on earth system science. Max Planck Institute for Meteorology, Hamburg

  44. Platt U, Stutz J (2008) Differential optical absorption spectroscopy, principal and applications, Springer, 597 pp

  45. Poorter RPE, Varekamp JC, Van Bergen MJ, Kreulen R, Sriwana T, Vroon PZ, Wirakusumah AD (1989) The Sirung volcanic boiling spring: an extreme chloride-rich, acid brine on Pantar (Lesser Sunda Island, Indonesia). Chem Geol 76:215–228

  46. Primulyana S, Bani P, Harris A (2017) The effusive-explosive transitions at Rokatenda 2012–2013: unloading by extrusion of degassed magma with lateral gas flow. Bull Volcanol 79:22. doi:10.1007/s00445-017-1104-1

  47. Rowe GL Jr, Ohsawa S, Takano B, Brantley SL, Fernandez JF, Barquero J (1992) Using crater lake chemistry to predict volcanic activity at Poas volcano, Costa Rica. Bull Volcanol 54:494–503

  48. Rye RO (1993) The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Econ Geol 88:733–753

  49. Rye RO (2005) A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215:5–36

  50. Shinohara H, Fujimoto K (1994) Experimental study in the system albite-andalousite-quartz-NaCl-H2O at 600 degrees C and 400 to 2000 bars. Geochim Cosmochim Acta 58:4857–4866

  51. Silver EA, Reed D, McCaffrey R (1983) Back arc thrusting in the eastern sunda arc, Indonsia: a consequence of arc-continent collision. J Geophys Res 88(B9):7429–7448

  52. Smekens JF, Clarke AB, Burton MR, Harijoko A, Wibowo HE (2015) SO2 emissions at Semeru volcano, Indonesia: characterization and quantification of persistent and periodic explosive activity. J Volcanol Geotherm Res 300:121–128

  53. Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods, results, and applications. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in magmas. Rev Mineral 30(691):1–66

  54. Tamburello G (2015) Ratiocalc: software for processing data from multicomponent volcanic gas analyzers. Comput Geosci 82:63–67

  55. Tamburello G, Agusto M, Caselli A, Tassi F, Vaselli O, Calabrese S, Rouwet D, Capaccioni B, Di Napoli R, Cardellini C, Chiodini G, Bitetto M, Brusca L, Bellomo S, Aiuppa A (2015) Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. J Geophys Res Solid Earth 120:6071–6084. doi:10.1002/2015JB012160

  56. Terada A, Hashimoto T, Kagiyama T (2012) A water flow modem of the active crater lake at Aso volcano, Japan: fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system. Bull Volcanol 74:641–655

  57. Takano B, Fazlullin SM, Delmelle P (2000) Analytical laboratory comparison of major and minor constituents in an active crater lake. J Volcanol Geotherm Res 97:497–508

  58. Varekamp JC, Pasternack GB, Rowe GL Jr (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179

  59. Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photochem Photobiol A 143:1–9

  60. Whitford DG, Comston W, Nicholls IA, Abbott MJ (1977) Geochemistry of the late Cenozoic lavas from the eastern Indonesia—role of subducted sediments in petrogenesis. Geology 5:571–575

  61. Whitney JA (1984) Volatiles in magmatic systems. In: Robertson, J.M. (Ed.), Fluid–mineral equilibria in hydrothermal systems, Rev. Econ. Geol., vol. 1, pp. 155–175

Download references


This work was achieved thanks to the collaboration between Center of Volcanology and Geological Hazards Mitigation (CVGHM) and Institut de Recherche pour le Développement (IRD) under the JEAI-Commission program. We gratefully acknowledge the technical assistance from Sirung Observatory. We thank the two anonymous referees for their beneficial review and T. Fischer for editorial handling.

Author information

Correspondence to Philipon Bani.

Additional information

Editorial responsibility: T.P. Fischer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bani, P., Alfianti, H., Aiuppa, A. et al. First study of the heat and gas budget for Sirung volcano, Indonesia. Bull Volcanol 79, 60 (2017).

Download citation


  • Sirung volcano
  • Crater lake
  • Heat loss
  • Degassing budget