Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dyke-diatreme transition in monogenetic volcanoes: insights from the Hillier Bay volcanic complex, Western Australia

Abstract

The factors controlling phreatomagmatism and diatreme formation are still poorly constrained and understood. Here, we describe the field relationships between mafic intrusions and volcaniclastic deposits observed at Hillier Bay, Western Australia, and discuss the implications for the formation of monogenetic basaltic volcanoes involving both phreatomagmatic and magmatic eruption phases. The Hillier Bay volcanic complex consists of a series of basaltic sheeted dykelets and larger dykes injected within the metamorphic basement. Volcaniclastic lithologies also occur, usually trapped between basaltic dykes and the basement. These vary between mixtures of juvenile basaltic fragments, metamorphic basement fragments and quartz/feldspar sand in different relative amounts. Based on the textures of the clastic lithologies, we argue that initial phreatomagmatic phases resulted from sequential injections of thin dykelets due to ascending magma struggling to open a path to the surface. The relatively lower magma/water ratio maximises the efficiency of premixing leading to phreatomagmatic explosions. Later, as the main body of magma reaches the shallow conduit through wider dykes, magma overcomes water availability, and the eruption style switches to magmatic/effusive. This implies that magma flux may be a determining factor controlling eruption style in at least some monogenetic volcanoes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Beeson J, Delor CP, Harris LB (1988) A structural and metamorphic traverse across the Albany Mobile Belt, Western Australia. Precambr Res 40–41:117–136. doi:10.1016/0301-9268(88)90064-2

  2. Befus KS, Hanson RE, Miggins DP, Breyer JA, Busbey AB (2009) Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas. J Volcanol Geotherm Res 181:155–172. doi:10.1016/j.jvolgeores.2008.12.017

  3. Bodorkos S, Clark DJ (2004) Evolution of a crustal-scale transpressive shear zone in the Albany–Fraser Orogen, SW Australia: 2. Tectonic history of the Coramup Gneiss and a kinematic framework for Mesoproterozoic collision of the West Australian and Mawson cratons. J Metamorph Geol 22:713–731. doi:10.1111/j.1525-1314.2004.00544.x

  4. Boger SD (2011) Antarctica—before and after Gondwana. Gondwana Res 19:335–371. doi:10.1016/j.gr.2010.09.003

  5. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950

  6. Brenna M, Cronin SJ, Németh K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova 23:70–75

  7. Calvari S, Tanner L (2011) The Miocene Costa Giardini diatreme, Iblean Mountains, southern Italy: model for maar-diatreme formation on a submerged carbonate platform. Bull Volcanol 73:557–576. doi:10.1007/s00445-010-0436-x

  8. Clark DJ, Hensen BJ, Kinny PD (2000) Geochronological constraints for a two-stage history of the Albany–Fraser Orogen, Western Australia. Precambr Res 102:155–183. doi:10.1016/s0301-9268(00)00063-2

  9. Darwin C (1876) Geological observations on the volcanic islands and parts of South America visited during the voyage of H.M.S. 'Beagle. Smith, Elder, and Co, London

  10. Dawson GC, Krapež B, Fletcher IR, McNaughton NJ, Rasmussen B (2002) Did late Palaeoproterozoic assembly of proto-Australia involve collision between the Pilbara, Yilgarn and Gawler Cratons? Geochronological evidence from the Mount Barren Group in the Albany–Fraser Orogen of Western Australia. Precambr Res 118:195–220. doi:10.1016/S0301-9268(02)00110-9

  11. Díez M, Connor CB, Kruse SE, Connor L, Savov IP (2009) Evidence of small-volume igneous diapirism in the shallow crust of the Colorado Plateau, San Rafael Desert, Utah. Lithosphere 1:328–336

  12. Freeman MJ, Donaldson MJ (2006) Geology of the southern Perth Basin and Margaret River wine district, southwestern Western Australia - a field guide. Geological Survey of Western Australia Record 2006/20

  13. Frey FA, McNaughton NJ, Nelson DR, deLaeter JR, Duncan RA (1996) Petrogenesis of the Bunbury Basalt, Western Australia: interaction between the Kerguelen plume and Gondwana lithosphere? Earth Planet Scie Lett 144:163–183. doi:10.1016/0012-821x(96)00150-1

  14. Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth-Sci Rev 45:1–44

  15. Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113:345–356. doi:10.1016/S0377-0273(01)00265-7

  16. Harley SL (1989) The origin of granulites: a metamorphic perspective. Geological Mag 126:215–247

  17. Harris LB, Li Z-X (1995) Palaeomagnetic dating and tectonic significance of dolerite intrusions in the Albany Mobile Belt, Western Australia. Earth Planet Scie Lett 131:143–164. doi:10.1016/0012-821x(95)00013-3

  18. Houghton BF, Nairn IA (1991) The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a ‘wet’ volcano. Bull Volcanol 54:25–49. doi:10.1007/bf00278204

  19. Houghton BF, Wilson CJN, Rosenberg MD, Smith IEM, Parker RJ (1996) Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bull Volcanol 58:59–66. doi:10.1007/s004450050126

  20. Keating G, Valentine G, Krier D, Perry F (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582. doi:10.1007/s00445-007-0154-1

  21. Kereszturi G, Németh K (2011) Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary). Geologica Carphathica 62:535–546

  22. Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201:227–240. doi:10.1016/j.jvolgeores.2010.08.018

  23. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33. doi:10.1016/j.jvolgeores.2013.09.003

  24. Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa AM, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly eroded monogenetic volcanic field: San Rafael, Utah, USA. Geology 40:695–698. doi:10.1130/g33074.1

  25. Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Soc London 140:939–944

  26. Kurszlaukis S, Barnett WP (2003) Volcanological and structural aspects of the Venetia kimberlite cluster – a case study of South African kimberlite maar-diatreme volcanoes. S African J Geol 106:165–192. doi:10.2113/106.2-3.165

  27. Lefebvre NS, White JDL, Kjarsgaard BA (2012) Spatter-dike reveals subterranean magma diversions: consequences for small multivent basaltic eruptions. Geology 40:423–426

  28. Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0739-9

  29. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274. doi:10.1007/bf01081755

  30. Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:4–32. doi:10.1016/j.jvolgeores.2006.06.019

  31. Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201:178–193. doi:10.1016/j.jvolgeores.2010.12.009

  32. Myers JS (1990) Albany-Fraser Orogen. W Aust Geol Surv, Memoir 3:255–263

  33. Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152. doi:10.1016/j.jvolgeores.2006.06.014

  34. Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—"Surtseyan-style" eruptions witnessed on Ambae Island. Episodes 29:87–93

  35. Németh K, Cronin S, Haller M, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Cent Eur J Geoscie 2:339–361. doi:10.2478/v10085-010-0013-8

  36. Németh K, Cronin S, Smith IM, Agustin Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74:2121–2137. doi:10.1007/s00445-012-0653-6

  37. Ort MH, Carrasco-Núñez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181:67–77. doi:10.1016/j.jvolgeores.2009.01.003

  38. Pallister JS et al (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712

  39. Quilty PG (1974) Tertiary stratigraphy of Western Australia. J Geol Soc Aust 21:301–318. doi:10.1080/00167617408728853

  40. Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U–Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precambr Res 133:329–337. doi:10.1016/j.precamres.2004.05.008

  41. Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84. doi:10.1016/j.jvolgeores.2005.06.007

  42. Rubin AM (1995) Propagation of magma filled cracks. Ann Rev Earth Planet Sci 23:287–336

  43. Sohn YK, Chough SK (1993) The Udo tuff cone, Cheju Island, South Korea: transformation of pyroclastic fall into debris fall and grain flow on a steep volcanic cone slope. Sedimentology 40:769–786. doi:10.1111/j.1365-3091.1993.tb01359.x

  44. Sohn YK, Park JB, Khim BK, Park KH, Koh GW (2002) Stratigraphy, petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island, Korea. J Volcanol Geotherm Res 119:1–20

  45. Thom R (1980) Clastic dykes near the south coast of Western Australia. Geol Surv W Aust, Annual Rep 1979:78–81

  46. Trigila R, Battaglia M, Manga M (2007) An experimental facility for investigating hydromagmatic eruptions at high-pressure and high-temperature with application to the importance of magma porosity for magma-water interaction. Bull Volcanol 69:365–372. doi:10.1007/s00445-006-0081-6

  47. Valentine GA (2012) Shallow plumbing system for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geotherm Res 223–224:47–63

  48. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic centre—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230

  49. Valentine GA, Perry FV (2007) Tectonicall controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

  50. Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: Subsurface processes, energetics, and eruptive products. Geology 40:1111–1114. doi:10.1130/g33411.1

  51. Valentine GA, Shufelt N, Hintz A (2011) Models of maar volcanoes, Lunar Crater (Nevada, USA). Bull Volcanol 73:753–765. doi:10.1007/s00445-011-0451-6

  52. van Otterloo J, Cas RF, Sheard M (2013) Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity. Bull Volcanol 75:1–21. doi:10.1007/s00445-013-0737-y

  53. Veevers JJ, Powell CM, Roots SR (1991) Review of seafloor spreading around Australia. I. synthesis of the patterns of spreading. Australian J Earth Sci 38:373–389. doi:10.1080/08120099108727979

  54. White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258. doi:10.1007/bf00414522

  55. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010

  56. Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102:803–814. doi:10.1029/96jb02935

Download references

Acknowledgements

This output is an expansion of part of the BSc (hons) research of MB at the University of Western Australia. We thank Dave Tucker, Gábor Kereszturi and Károly Németh for constructive discussion and comments, and Richard Hanson, Jozua van Otterloo and an anonymous reviewer for their thoughtful reviews. Janet Macmillan assisted us in the field. Pierre Simon Ross is thanked for editorial handling.

Author information

Correspondence to Marco Brenna.

Additional information

This paper constitutes part of a topical collection: Smith IEM, Nemeth K, and Ross P-S (eds) Monogenetic volcanism and its relevance to the evolution of volcanic fields.

Editorial responsibility: P-S Ross, Guest Editor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brenna, M., Gee, M.A.M. Dyke-diatreme transition in monogenetic volcanoes: insights from the Hillier Bay volcanic complex, Western Australia. Bull Volcanol 76, 853 (2014). https://doi.org/10.1007/s00445-014-0853-3

Download citation

Keywords

  • Diatreme root zone
  • Sheeted dykes
  • Monogenetic volcanism
  • Eruption style
  • Western Australia