Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review

Abstract

A volcano can be considered as a dynamical system, and each time series recorded at a volcano can be interpreted as one of its observables. It is therefore theoretically possible to extract, even from a single time series, information about the underlying governing system. This is done through a procedure called “embedding” that is based on the intuitive statement that the only time series available carries with it information also about the time evolution of other parameters that we are not able to sample or observe. Carrying out this embedding procedure requires estimates of key parameters such as the optimal delay time and a proper embedding dimension. Other independent but often conceptually similar procedures allow decompositions of the time series into components that may in turn be associated to different source processes. The key to the characterization of volcanic regimes is a process of data reduction, aimed at parsing the amount of data into its most useful components which can then facilitate the interpretation of the system. The approaches presented here can be used to conduct such a data reduction phase, and the reduced data stream can be used not only for characterizing different volcanic regimes but also for determining transitions between them, examining their relationship with external or internal events such as tectonic or volcano-tectonic seismic events, looking for precursors of paroxysmal eruptive phases etc. These results can become additional inputs for physical models in order to understand in detail the physical changes that occurred in the volcanic system and their possible consequences. In this paper, the existing literature on this subject will be reviewed and the prospects of future research will be discussed.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. Acernese F, Ciaramella A, De Martino S, Falanga M, Tagliaferri R (2000) Neural networks for blind sources separation of Stromboli explosion quakes, in ICA2000, international workshop on independent component analysis and blind signal separation, 19–22 June 2000, Helsinki, Finland

  2. Acernese F, Ciaramella A, De Martino S, Falanga M e, Tagliaferri R (2003) Neural networks for blind sources separation of Stomboli explosion quakes. IEEE Trans Neural Netw 14:1

  3. Acernese F, Ciaramella A, De Martino S, Falanga M, Godano C, Tagliaferri R (2004) Polarisation analysis of the independent components of low frequency events at Stromboli volcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 137:153–168

  4. Aldrich C, Barkhuizen M (2003) Process system identification strategies based on the use of singular spectrum analysis. Mineral Eng 16:815–826

  5. Alligood KT, Sauer TD, Yorke JA (2000) Chaos: an introduction to dynamical systems, Springer, 3. ed., 603 pp

  6. Arámbula-Mendoza R, Lesage P, Valdés-González C, Varley NR, Reyes-Dávila G, Navarro C (2011) Seismic activity that accompanied the effusive and explosive eruptions during the 2004–2005 period at Volcán de Colima, Mexico. J Volcanol Geotherm Res 205(1–2):30–46

  7. Araujo AFR and Rego RLME (2013) Self-organizing maps with a time-varying structure. ACM Comput Surv 46, 1, Art. 7, 38 pp. DOI: http://dx.doi.org/10.1145/2522968.2522975

  8. Aspinall WP, Woo G, Voight B, Baxter PJ (2003) Evidence based volcanology: application to eruption crises. J Volcanol Geotherm Res 128(1–3):273–285

  9. Aspinall W, Carniel R, Jaquet O, Woo G, Hincks T (2006) Using hidden multi-state Markov models with multi-parameter volcanic data to provide empirical evidence for alert level decision-support. J Volcanol Geotherm Res 153(1–2):112–124. doi:10.1016/j.jvolgeores.2005.08.010

  10. Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171(2):921–942. doi:10.1111/j.1365-246X.2007.03559.x

  11. Bebbington MS (2013) Assessing probabilistic forecasts of volcanic eruption onsets. Bull Volcanol 75(12):1–13

  12. Bell AF, Naylor M, Heap MJ, Main IG (2011) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38, L15304. doi:10.1029/2011GL048155

  13. Bell AF, Naylor M, Main IG (2013) The limits of predictability of volcanic eruptions from accelerating rates of earthquakes. Geophys J Int 194(3):1541–1553

  14. Beyreuther M, Wassermann J (2011) Hidden semi-Markov model based earthquake classification system using weighted finite-state transducers. Nonlinear Process Geophys 18(1):81–89

  15. Beyreuther M, Carniel R, Wassermann J (2008) Continuous hidden Markov models: application to automatic earthquake detection and classification at Las Canãdas caldera, Tenerife. J Volcanol Geotherm Res 176(4):513–518. doi:10.1016/j.jvolgeores.2008.04.021

  16. Beyreuther M, Hammer C, Wassermann J, Ohrnberger M, Megies T (2012) Constructing a hidden Markov model based earthquake detector: application to induced seismicity. Geophys J Int 189(1):602–610

  17. Bicego M, Acosta-Munoz C, Orozco-Alzate M (2013) Classification of seismic volcanic signals using hidden-Markov-model-based generative embeddings. IEEE Trans Geosci Remote Sens 51(6):3400–3409

  18. Bishop C (1995) Neural networks for pattern recognition, Oxford University Press. 500 pp

  19. Bonaccorso A, Bonforte A, Calvari S, Del Negro C, Di Grazia G, Ganci G, Neri M, Vicari A, Boschi E (2011) The initial phases of the 2008–2009 Mount Etna eruption: a multidisciplinary approach for hazard assessment. J Geophys Res B Solid Earth 116(3), B03203

  20. Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull Volcanol 74(1):1–10

  21. Bottiglieri M, De Martino S, Falanga M, Godano C, Palo M (2005) Statistics of inter-time of Strombolian explosion-quakes. Europhys Lett 72(3):492–498. doi:10.1209/epl/i2005-10258-0

  22. Box G, Jenkins GM, Reinsel G (1994) Time series: forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

  23. Bozzo E, Carniel R, Fasino D (2010) Relationship between Singular Spectrum Analysis and Fourier analysis: theory and application to the monitoring of volcanic activity. Comput Math Appl 60(3):812–820, 08

  24. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20:217–236

  25. Cabras G, Carniel R, Wassermann J (2008) Blind source separation: an application to the Mt. Merapi volcano, Indonesia. Fluct Noise Lett 8:3–4, L1-L12

  26. Cabras G, Carniel R, Wasserman J (2010) Signal enhancement with generalized ICA applied to Mt. Etna Volcano, Italy. Boll Geofis Teor Appl 51(1):57–73

  27. Cabras G, Carniel R, Jones J (2012) Non-negative matrix factorization: an application to Erta’Ale volcano, Ethiopia. Boll Geofis Teor Appl 53(2):231–242. doi:10.4430/bgta0056

  28. Cabras G, Carniel R, Jones J, Takeo M (2014) Reducing wind noise in seismic data using non-negative matrix factorization: an application to Villarrica volcano, Chile. Geofísica Int 53–1:77–85

  29. Cannata A, Giudice G, Gurrieri S, Montalto P, Alparone S, Di Grazia G, Favara R, Gresta S, Liuzzo M (2010) Relationship between soil CO2 flux and volcanic tremor at Mt. Etna: implications for magma dynamics. Environ Earth Sci 61(3):477–489

  30. Carbone D, Zuccarello L, Montalto P, Rymer H (2012) New geophysical insight into the dynamics of Stromboli volcano (Italy). Gondwana Res 22(1):290–299

  31. Cárdenas-Peña D, Orozco-Alzate M, Castellanos-Dominguez G (2013) Selection of time-variant features for earthquake classification at the Nevado-del-Ruiz volcano. Comput Geosci 51:293–304

  32. Carniel R (2005) Development of a new diagnostic protocol using a neuro-dynamical tool, Chaos. Solitons Fractals 24(1):349–352

  33. Carniel R, Di Cecca M (1999) Dynamical tools for the analysis of long term evolution of volcanic tremor at Stromboli. Ann Geofis 42(3):483–495

  34. Carniel R, Iacop F (1996) Spectral precursors of paroxysmal phases of Stromboli. Ann Geofis XXXIX(2):327–345

  35. Carniel R, Tárraga M (2006) Can tectonic events change volcanic tremor at Stromboli? Geophys Res Lett 33(20):L20321

  36. Carniel R, Casolo S, Iacop F (1996) “Spectral analysis of volcanic tremor associated with the 1993 paroxysmal events at Stromboli”. In: McGuire WJ, Jones AP and Neuberg J (eds), Volcano instability on the Earth and other planets, Geological Society Special Publication n. 110, 373–381

  37. Carniel R, Di Cecca M, Rouland D (2003) Ambrym, Vanuatu (July–August 2000): spectral and dynamical transitions on the hours-to-days timescale. J Volcanol Geotherm Res 128(1–3):1–13

  38. Carniel R, Ortiz R, Di Cecca M (2006a) Spectral and dynamical hints on the timescale of preparation of the 5 April 2003 explosion at Stromboli volcano. Can J Earth Sci 43:41–55

  39. Carniel R, Barazza F and Pascolo PB (2006b) Improvement of Nakamura technique by singular spectrum analysis, soil dynamics and earthquake engineering, Elsevier, 26, 1, 55–63

  40. Carniel R, Barazza F, Tárraga M, Ortiz R (2006c) On the singular values decoupling in the singular spectrum analysis of volcanic tremor at Stromboli. Nat Hazards Earth Syst Sci 6:903–909

  41. Carniel R, Tárraga M, Barazza F, García A (2008a) Possible interaction between tectonic events and seismic noise at Las Cañadas Volcanic Caldera, Tenerife, Spain. Bull Volcanol 70(9):1113–1121. doi:10.1007/s00445-007-0193-7

  42. Carniel R, Jaquet O, Tárraga M (2008b) Perspectives on the application of the geostatistical approach to volcano forecasting at different time scales. Chapter 14, In: Gottsmann J and Marti J (eds.): Caldera volcanism: analysis, modelling and response, Developments in Volcanology, Elsevier, Vol. 10, Pages 471–487, doi:10.1016/S1871-644X(07)00014-9

  43. Carniel R, Barbui L, Jolly AD (2013a) Detecting dynamical regimes by Self-Organizing Map (SOM) analysis: an example from the March 2006 phreatic eruption at Raoul Island, New Zealand Kermadic Arc. Boll Geofis Teor Appl 54(1):39–52

  44. Carniel R, Jolly AD, Barbui L (2013b) Analysis of phreatic events at Ruapehu volcano, New Zealand using a new SOM approach. J Volcanol Geotherm Res 254:69–79

  45. Ceamanos X, Waske B, Benediktsson JA, Chanussot J, Fauvel M, Sveinsson JR (2010) A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. Int J Image Data Fusion 1(4):293–307

  46. Chouet B (2003) Volcano seismology. Pure Appl Geophys 160(3–4):739–788

  47. Chouet BA, Matoza RS (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175

  48. Chouet BA, Shaw HR (1991) Fractal properties of tremor and gas-piston events observed at Kilauea Volcano, Hawaii. J Geophys Res 96:10177–10189

  49. Cichocki A, Amari S (2003) Adaptive blind signal and image processing. John Wiley, Chichester, UK

  50. Cichocki A, Georgiev P (2003) Blind source separation algorithms with matrix constraints, IEICE Trans. Fundam Electron Commun Comput Sci E86-A:513–522

  51. Cichocki A, Zdunek R, Phan T, Amari S (2009) Nonnegative matrix and tensor factorizations: applications to exploratory multy-way data analysis and blind source separation. Wiley, Tokyo, 500 pp

  52. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(3–73):1990

  53. Collier L, Neuberg J (2006) Incorporating seismic observations into 2D conduit flow modelling. J Volcanol Geotherm Res 152(3–4):331–346

  54. Collinson ASD, Neuberg JW (2012) Gas storage, transport and pressure changes in an evolving permeable volcanic edifice. J Volcanol Geotherm Res 243–244:1–13

  55. Cornelius RR, Scott PA (1993) A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng 26:233–252

  56. Currenti G, Del Negro C, Lapenna V, Telesca L (2005) Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna volcano, Sicily (Italy). Chaos Solitons Fractals 23:1921–1929

  57. Cusano P, Petrosino S, Saccorotti G (2008) Hydrothermal origin for sustained long-period (LP) activity at Campi Flegrei volcanic complex, Italy. J Volcanol Geotherm Res 177(4):1035–1044

  58. Daubechies I (1990) Wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

  59. Daubechies I (1992) Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM—Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992. ISBN:0-89871-274-2

  60. D’Auria L, Giudicepietro F, Martini M, Orazi M, Peluso R, Scarpato G (2010) Polarization analysis in the discrete wavelet domain: an application to volcano seismology. Bull Seismol Soc Am 100(2):670–683

  61. De la Cruz Reyna S, Tilling R (2008) Scientific and public responses to the ongoing volcanic crisis at Popocatépetl volcano, México: importance of an effective hazards warning system. J Volcanol Geotherm Res 170:121–134. doi:10.1016/j.jvolgeores.2007.09.002

  62. De la Cruz Reyna S, Tárraga M, Ortiz R, Martínez Bringas A (2010) Tectonic earthquakes triggering volcanic seismicity and eruptions: case studies at Tungurahua and Popocatépetl volcanoes. J Volcanol Geotherm Res 193:37–48

  63. De la Cruz-Reyna S, Reyes-Davila G (2001) A model to describe precursory material-failure phenomena: application to short-term forecasting at Colima volcano. Mexico Bull Volcanol 63:297–308

  64. De Lauro E, De Martino S, Falanga M, Palo M, Scarpa R (2005) Evidence of VLP volcanic tremor in the band [0.2–0.5] Hz at Stromboli volcano, Italy. Geophys Res Lett 32 (17), art. no. L17303, 1–4

  65. De Lauro E, De Martino S, Falanga M, Palo M (2006) Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: some consequences for vibrating structures. Nonlinear Processes Geophys 13:393–400

  66. De Lauro E, De Martino S, Falanga M, and Palo M (2009a) Modelling the macroscopic behavior of Strombolian explosions at Erebus volcano, Physics of the Earth and Planetary Interiors,176,3–4,174–186

  67. De Lauro E, De Martino S, Falanga M, Palo M (2009b) Decomposition of high-frequency seismic wavefield of the Strombolian-like explosions at Erebus volcano by independent component analysis. Geophys J Int 177(3):1399–1406

  68. De Lauro E, De Martino S, Falanga M, Palo M (2011) Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results. Nonlinear Process Geophys 18(6):925–940

  69. De Lauro E, De Martino S, Palo M, Ibañez JM (2012) Self-sustained oscillations at Volcán de Colima (México) inferred by independent component analysis. Bull Volcanol 74(1):279–292

  70. De Martino S, Falanga M, Scarpa R, Godano C (2005) Very long period volcanic tremor at Stromboli, Italy. Bull Seismol Soc Am 95:1186–1192

  71. De Martino S, Falanga M, Palo M, Montalto M, Patanè D (2011) Statistical analysis of the seismicity during the Strombolian crisis of 2007, Italy: evidence of a precursor in tidal range. J Geophys Res 116, B09312. doi:10.1029/2010JB007503

  72. Del Negro C, Greco F, Napoli R, Nunnari G (2008) Denoising gravity and geomagnetic signals from Etna volcano (Italy) using multivariate methods. Nonlinear Process Geophys 15(5):735–749

  73. Del Pin E, Carniel R, Tárraga M (2008) Event recognition by detrended fluctuation analysis: an application to Teide-Pico Viejo volcanic complex, Tenerife, Spain. Chaos Solitons Fractals 36(5):1173–1180. doi:10.1016/j.chaos.2006.07.044

  74. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656

  75. Elliot DF, Rao KR (1982) Fast transforms: algorithms, analysis, applications. Academic, New York

  76. Endo TE, Murray T (1991) Real-time seismic amplitude measurement (RSAM). A volcano monitoring and prediction tool. Bull Volcanol 53:533–545

  77. Esposito AM, Giudicepietro F, D’Auria L, Scarpetta S, Martini M, Coltelli M, Marinaro M (2008) Unsupervised neural analysis of very long period events at Stromboli volcano using the self-organizing maps. Bull Seismol Soc Am 98:2449–2459. doi:10.1785/0120070110

  78. Esposito A, D’Auria L, Giudicepietro F, Peluso R, Martini M (2013) Automatic recognition of landslides based on neural network analysis of seismic signals: an application to the monitoring of Stromboli volcano (Southern Italy). Pure Appl Geophys 170:1821–1832

  79. Esposito A, D’Auria L, Angelillo A, Giudicepietro F, Martini M (2014) Predictive analysis of the seismicity level at Campi Flegrei volcano using a data-driven approach. In “Recent advances of neural network models and applications”, Proceedings of the 23rd Workshop of the Italian Neural Networks Society (SIREN), May 23–25, Vietri sul Mare, Salerno, Italy. Series “Smart Innovation, Systems and Technologies” Vol. 26, Springer, pp 133–145

  80. Falsaperla S, Graziani S, Nunnari G, Spampinato S (1996) Automatic classification of volcanic earthquakes by using multi-layered neural networks. Nat Hazards 13(3):205–228

  81. Falsaperla S, Alparone S, Spampinato S (2003) Seismic features of the June 1999 tectonic swarms in the Stromboli volcano region, Italy. J Volcanol Geotherm Res 125(1–2):121–136

  82. Fattori Speranza F, Carniel R (2008) Structural changes of volcanic tremor at Stromboli volcano. J Volcanol Geotherm Res 171(1–2):103–117

  83. Flandrin P, Rilling G, Gonçalvés P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114

  84. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

  85. Fukuzono T, Terashima H (1985) Experimental study of slope failure in cohesive soils caused by rainfall. In: Int Symp on Erosion, Debris Flow and Disaster Prevention. Tsukaba, Japan

  86. García A, Fernández-Ros A, Berrocoso M, Marrero JM, Prates G, De la Cruz-Reyna S, Ortiz R (2014) Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Islands, 2011–2013. Geophys J Int 197(1):322–334. doi:10.1093/gji/ggt505

  87. Garcia-Aristizabal A, Selva J, Fujita E (2013) Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest. Bull Volcanol 75(2):1–13

  88. Geirsson H, Rodgers M, LaFemina P, Witter M, Roman D, Muñoz A, Tenorio V, Alvarez J, Jacobo VC, Nilsson D, Galle B, Feineman MD, Furman T, Morales A (2014) Multidisciplinary observations of the 2011 explosive eruption of Telica volcano, Nicaragua: implications for the dynamics of low-explosivity ash eruptions. J Volcanol Geotherm Res 271:55–69

  89. Giacco F, Esposito AM, Scarpetta S, Giudicepietro F, Marinaro M (2009) Support vector machines and MLP for automatic classification of seismic signals at Stromboli volcano. In: Apolloni B, Bassis S, Morabito FC (Eds.), WIRN. Frontiers in Artificial Intelligence and Applications, vol. 204. IOS Press, pp. 116–123

  90. Godano C, Capuano P (1999) Source characterisation of low frequency events at Stromboli and Vulcano islands (Isole Eolie Italy). J Seismol 3:393–408

  91. Gottsmann JH, Carniel R, Coppo N, Wooller L, Hautmann S, Rymer H (2007) Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: multiparameter insights from Nisyros, Greece. Geophys Res Lett 34(L07307):1–5

  92. Green RM, Bebbington MS, Cronin SJ, Jones G (2013) Geochemical precursors for eruption repose length. Geophys J Int 193(2):855–873

  93. Gunn LS, Blake S, Jones MC, Rymer H (2014) Forecasting the duration of volcanic eruptions: an empirical probabilistic model. Bull Volcanol 76(1):1–18, in press

  94. Hammer C, Ohrnberger M (2012) Forecasting seismo-volcanic activity by using the dynamical behavior of volcanic earthquake rates. J Volcanol Geotherm Res 229–230:34–43

  95. Hammer C, Beyreuther M, Ohrnberger M (2012) Seismic-event spotting system for volcano fast-response systems. Bull Seismol Soc Am 102(3):948–960. doi:10.1785/0120110167

  96. Hammer C, Ohrnberger M, Fah D (2013) Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophys J Int 192:425–439

  97. Hansen BE (1992) Testing for parameter instability in linear models. J Policy Model 14(4):517–533

  98. Harris AJL, Carniel R, Jones J (2005) Identification of variable convective regimes at Erta Ale Lava lake. J Volcanol Geotherm Res 142(3–4):207–223

  99. Hastie T, Tibshirani R, Friedman J (2002) The elements of statistical learning. Springer, Berlin, 533 pp

  100. Hayakawa M, Liu J-Y, Hattori K, and L Telesca (2009) Preface in “Electromagnetic phenomena associated with earthquakes and volcanoes” (Eds. Hayakawa M, Liu JY, Hattori K and Telesca L), Phys Chem Earth 34, 341–342

  101. Hellweg M (2000) Physical models for the source of Lascar’s harmonic tremor. J Volcanol Geotherm Res 101:183–198

  102. Huang NE, Shen ZS, Long RM, Wu C, Shih H-H, Zheng Q, Yen N-C, Tung C-C, Liu H-H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc London Ser A 454:903–995

  103. Hyvärinen A, Karhunen J and Oja E (2001) Independent component analysis, John Wiley

  104. Ichihara M, Takeo M, Yokoo A, Oikawa J, Ohminato T (2012) Monitoring volcanic activity using correlation patterns between infrasound and ground motion. Geophys Res Lett 39, L04304

  105. Jaquet O, Carniel R (2001) Stochastic modelling at Stromboli: a volcano with remarkable memory. J Volcanol Geotherm Res 105:249–262

  106. Jaquet O, Carniel R (2003) Multivariate stochastic modelling: towards forecasts of paroxysmal phases at Stromboli. J Volcanol Geotherm Res 128:261–271

  107. Jaquet O, Sparks RSJ and Carniel R (2006) Magma memory recorded by statistics of volcanic explosions at the Soufrière Hills volcano, Montserrat, in Mader HM, Coles SG, Connor CB and Connor LJ (eds), “Statistics in Volcanology”, IAVCEI Publications n. 1, Geological Society, ISBN 978-1-86239-208-3, 296 pp

  108. Jones JP, Carniel R, Malone SD (2012a) Sub-band decomposition and reconstruction of continuous volcanic tremor. J Volcanol Geotherm Res 213–214:98–115

  109. Jones JP, Carniel R, Malone SD (2012b) Decomposition, location, and persistence of seismic signals recovered from continuous tremor at Erta 'Ale, Ethiopia. J Volcanol Geotherm Res 213–214:116–129

  110. Julian BR (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877

  111. Julian B (2000) Period doubling and other non-linear phenomena in volcanic earthquakes and tremor. J Volcanol Geotherm Res 101:19–26

  112. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

  113. Kawakatsu H, Yamamoto M (2007) Volcano seismology. Treatise Geophys 4:389–420

  114. Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6):3403–3411

  115. Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125(3–4):271–289

  116. Klose CD (2006) Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data. Comput Geosci 10(3):265–277

  117. Kohonen T (1982) Self-organised formation of topologically correct feature map. Biol Cybern 43:56–69

  118. Konstantinou KI (2002) Deterministic non-linear source processes of volcanic tremor signals accompanying the 1996 Vatnajökull eruption, Central Iceland. Geophys J Int 148(3):663–675

  119. Konstantinou KI, Lin CH (2004) Nonlinear time series analysis of volcanic tremor events recorded at Sangay volcano, Ecuador. Pure Appl Geophys 161(1):145–163

  120. Kuan CM, Hornik K (1995) The generalized fluctuation test: a unifying view. Econom Rev 14(2):135–161

  121. Langer H, Falsaperla S, Powell T, Thompson G (2006) Automatic classification and a-posteriori analysis of seismic event identification at Soufriere Hills volcano, Montserrat. J Volcanol Geotherm Res 153(1–2):1–10

  122. Langer H, Falsaperla S, Masotti M, Campanili R, Spampinato S, Messina A (2009) Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt. Etna. Italy Geophys J Int 178:1132–1144. doi:10.1111/j.1365-246X.2009.04179.x

  123. Langer H, Falsaperla S, Messina A, Spampinato S, Behncke B (2011) Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data. J Volcanol Geotherm Res 200:1–17

  124. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

  125. Lee C-W, Lu Z, Kwoun O-I, Won J-S (2008) Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry. Earth Planets Space 60(5):447–452

  126. Leibert W, Pawelzik K, Schuster HG (1991) Optimal embeddings of chaotic attractors from topological considerations. Europhys Lett 14:521–526

  127. Lesage P (2008) Automatic estimation of optimal autoregressive filters for the analysis of volcanic seismic activity. Nat Hazard Earth Syst Sci 8:369–376

  128. Lin M-J, Jeng Y (2010) Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan. Geomorphology 119:97–110

  129. Lippmann RP (1987) Introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22

  130. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

  131. Lovallo M, Marchese F, Pergola N, Telesca L (2007) Fisher information analysis of volcano-related advanced, very-high-resolution radiometer (AVHRR) thermal products time series. Phys A 384:529–534

  132. Lovallo M, Marchese F, Pergola N, Telesca L (2009) Fisher information measure of temporal fluctuations in satellite advanced very high resolution radiometer (AVHRR) thermal signals recorded in the volcanic area of Etna (Italy). Commun Nonlinear Anal Numer Simul 14:174–181

  133. Madonia P, Cusano P, Diliberto IS, Cangemi M (2013) Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys Chem Earth 63:160–169

  134. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal and Mach Intell 11(7):674–693

  135. Marchese F, Pergola N, Telesca L (2006) Investigating the temporal fluctuations in satellite advanced very high resolution radiometer thermal signals measured in the volcanic area of Etna (Italy). Fluct Noise Lett 6:L305–L316

  136. Martini F, Tassi F, Vaselli O, Del Potro R, Martinez M, del Laat RV, Fernandez E (2010) Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence. J Volcanol Geotherm Res 198(3–4):416–432

  137. Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment, Statistics in Volcanology, edited by Mader HM, Coles SG, Connor CB and Connor LJ, IAVCEI Publications, Geol Soc Lond

  138. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72(6):705–716

  139. Masotti M, Falsaperla S, Langer H, Spampinato S, Campanini R (2006) Application of support vector machine to the classification of volcanic tremor at Etna, Italy. Geophys Res Lett 33

  140. Masotti M, Campanini R, Mazzacurati L, Falsaperla S, Langer H, Spampinato S (2008) TREMOrEC: a software utility for automatic classification of volcanic tremor. Geochem Geophys Geosyst 9, Q04007. doi:10.1029/2007GC001860

  141. Matheron G (1962) Traité de géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 pp

  142. Mineva A, Popivanov D (1996) Method for single-trial readiness potential identification, based on singular spectrum analysis. J Neurosci Methods 68:91–99

  143. Nakano M, Kumagai H (2005) Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu–Shirane volcano. Jpn J Volcanol Geotherm 147:233–244

  144. Nakano M, Kumagai H, Kumazawa M, Yamaoka K, Chouet B (1998) The excitation and characteristic frequency of the long-period volcanic event: an approach based on an inhomogeneous autoregressive model of a linear dynamic system. J Geophys Res 103:10 031–10 046

  145. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi:10.1007/s004450100173

  146. Ohrnberger M (2001) Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia. Ph.D. thesis, Institut fuer Geowissenschaften, Universitaet Postdam

  147. Orozco-Alzate M, Acosta-Muñoz C and Makario Londoño-Bonilla J (2012) The automated identification of volcanic earthquakes: concepts, applications and challenges. Earthquake Research and Analysis—Seismology, Seismotectonic and Earthquake Geology, D’Amico S. (Ed.), ISBN: 978-953-307-991-2, InTech, Croatia

  148. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

  149. Palo M, Cusano P (2013) Wavefield decomposition and phase space dynamics of the seismic noise at Volcàn de Colima, Mexico: evidence of a two-state source process. Nonlinear Processes Geophys 20:71–84

  150. Papageorgiou E, Foumelis M, Parcharidis I (2012) Long-and short-term deformation monitoring of Santorini volcano: unrest evidence by DInSAR analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (5), art. no. 6220261, 1531–1537

  151. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res Solid Earth 116, B12206

  152. Procaccia I (1988) Universal properties of dynamically complex systems: the organisation of chaos. Nature 333:618–623

  153. Pshenichny CA, Nikolenko SI, Carniel R, Vaganov PA, Khrabrykh ZV, Moukhachov VP, Akimova-Shterkhun VL, Rezyapkin AA (2009) The event bush as a semantic-based numerical approach to natural hazard assessment (exemplified by volcanology). Comput Geosci 35(5):1017–1034

  154. Rilling G, Flandrin P, Gonçalvès P (2002) Empirical mode decomposition MATLAB codes. http://perso.ens-lyon.fr/patrick.flandrin/emd.html

  155. Ripepe M, Harris AJL, Carniel R (2002) Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J Volcanol Geotherm Res 118:285–297

  156. Rogers JA, Stephens JA (1995) SSAM real time seismic spectral amplitude measurement on PC and its application to volcano monitoring. Bull Seism Soc Am 85:632–639

  157. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for the calculating largest Lyapunov exponents from small datasets. Phys D 65:117–134

  158. Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res, in press

  159. Samsonov S, van der Kooij M, Tiampo K (2011) A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput Geosci 37(8):1083–1091

  160. Schick R, Riuscetti M (1973) An analysis of volcanic tremor at South-Italian volcanoes. Zeit Geophysik 39:262–274

  161. Schmidt MN, Larsen J, Hsiao FT, (2007) Wind noise reduction using non-negative sparse coding, in IEEE Workshop on Machine Learning for Signal Processing, 431–436

  162. Segall P (2013) Volcano deformation and eruption forecasting. Geochem Soc Spec Publ 380(1):85–106

  163. Shannon CE (1948) “A mathematical theory of communication”, Bell Syst Tech J, 27, 379–423 & 623–656

  164. Shaw R (1984) The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz, CA

  165. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15

  166. Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science 335:1310–1311

  167. Takens F (1981) Detecting strange attractors in turbulence, in dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer, Berlin, pp 336–381

  168. Tárraga M, Carniel R, Ortiz R, Marrero JM, García A (2006) On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat Hazards Earth Syst Sci 6:365–376

  169. Tárraga M, Carniel R, Ortiz R, García A (2008a) The failure forecast method. Review and application for the realtime detection of precursory patterns at reawakening volcanoes. Chapter 13 In: Gottsmann, J. and Marti, J (eds.): Caldera volcanism: analysis, modelling and response, Developments in Volcanology, Elsevier, Vol. 10, 447–469, doi:10.1016/S1871-644X(07)00013-7

  170. Tárraga M, Carniel R, Ortiz R, García A, Moreno H (2008b) A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September–October 2000. Chaos, Solitons Fractals 37(5):1292–1299

  171. Tárraga M, De La Cruz-Reyna S, Mendoza-Rosas AT, Carniel R, Martínez-Bringas A, García A, Ortiz R (2012) Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): a case of tectonic earthquakes influencing volcanic activity. Acta Geophys 60(3):664–681. doi:10.2478/s11600-012-0020-1

  172. Telesca L, Lovallo M, Carniel R (2010) Time-dependent Fisher information measure of volcanic tremor before 5 April 2003 paroxysm at Stromboli volcano, Italy. J Volcanol Geotherm Res 195:78–82

  173. Tilling RI (1989) Volcanic hazards and their mitigation: progress and problems. Rev Geophys 27(2):237–269. doi:10.1029/RG027i002p00237

  174. Tokarev PI (1963) On a possibility of forecasting of Bezymianny volcano eruptions according to seismic data. Bull Volcanol 26:379–386

  175. UNDRO (1979) Natural disasters and vulnerability analysis. Office of the United Nations Disaster Relief Co-ordinator (UNDRO), Report of Expert Group Meeting (9–12 July 1979), UNDRO, Geneva

  176. Vapnik V (1998) Statistical learning theory. Wiley and Sons, NewYork

  177. Vargas-Bracamontes DM, Nava FA, Reyes-Dávila GA (2009) Time-scale wavelet patterns related to the 1998–1999 eruptions of the Colima volcano, and their possible implications for eruption forecasting. J Volc Geotherm Res 184(3–4):271–284

  178. Vila J, Macià R, Kumar K, Ortiz R, Moreno H, Correig AM (2006) Analysis of the unrest of active volcanoes using variations of the base level noise seismic spectrum. J Volcanol Geotherm Res 153:11–20

  179. Voight B (1988) A method for prediction of volcanic eruptions. Nature 332(10):125–130

  180. Walden AT, Contreras Cristan A (1998) The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events. Proc R Soc A Math Phys Eng Sci 454:2243–2266

  181. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics AU-15:70–73

  182. Weston J, Watkins C (1999) Multi-class support vector machines, Proc. ESANN99, ed. Verleysen M, D. Facto Press, Bruxelles

  183. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

  184. Wu C, Zhou R (2006) Application of Hilbert-Huang transform in extracting dynamic properties of seismic signals. J Earthq Eng Eng Vib 26(5):41–46

  185. Xue Y, Cao J, Tian R (2013) A comparative study on hydrocarbon detection using three EMD-based time–frequency analysis methods. J Appl Geophys 89:108–115

  186. Zeileis A (2005) A unified approach to structural change tests based on ML scores, F statistics, and OLS residuals. Econ Rev 24(4):445–466

  187. Zeileis A, Leisch F, Hornik K, Kleiber C (2002) strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7(2):1–38

Download references

Acknowledgments

The author wishes to acknowledge the invaluable help resulted from discussions with his coauthors and former students of the last couple of decades. The methods described here were studied and/or developed also during several research periods spent by the author in foreign institutions, including the following:

-Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), México D.F., México

-Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

-ITMO University, St. Petersburg, Russia

-Centro de Investigaciones en Ciencias de la Tierra (CICTERRA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina

Figures are based on original drawings by my former students Fausto Barazza and Luca Barbui.

The paper was improved substantially by the thoughtful comments of the reviewers, Art Jolly and Servando De la Cruz Reyna, and of the editor Steve Self; their help is warmly acknowledged.

Author information

Correspondence to Roberto Carniel.

Additional information

Editorial responsibility: S. Self

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carniel, R. Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review. Bull Volcanol 76, 848 (2014). https://doi.org/10.1007/s00445-014-0848-0

Download citation

Keywords

  • Time series data reduction
  • Dynamical analysis
  • Embedding
  • Precursors
  • Volcanic regimes
  • Pattern recognition