Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu

Abstract

Volcanoes provide important contributions to atmospheric budgets of SO2 and reactive halogens, which play significant roles in atmospheric oxidative capacity and radiation. However, the global source strengths of volcanic emissions remain poorly constrained. These uncertainties are highlighted here by the first measurements of gas emission rates from Ambrym volcano, Vanuatu. Our initial airborne ultraviolet spectroscopic measurements made in January 2005 indicate fluxes of 18–270 kg s-1 of SO2, and 62–110 g s-1 of BrO, into the atmosphere, placing Ambrym amongst the largest known contemporary point sources of both these species on Earth. We also estimate high Cl and F fluxes of ~8–14 and ~27–50 kg s-1, respectively, for this period. Further observations using both airborne and spaceborne remote sensing reveal a fluctuating SO2 output between 2004 and 2008, with a surge in the first half of 2005, and underline the substantial contribution that a single passively degassing volcano can make to the atmospheric budget of sulfur and halogens.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

References

  1. Aiuppa A, Bellomo S, Brusca L, D’Alessandro W, Di Paola R, Longo M (2006) Major-ion bulk deposition around an active volcano (Mt. Etna, Italy). Bull Volcanol 68:255–265. doi:10.1007/s00445-005-0005-x

  2. Allard P, Carbonelle J, Metrich N, Zettwoog P (1991) Eruptive and diffuse emissions of carbon dioxide from Etna volcano. Nature 351:38–391

  3. Andres RJ, Kasgnoc AD (1998) A time-average inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25,251–25,261

  4. Beaglehole JC (1961) The journals of Captain James Cook on his voyages of discovery II. The voyage of the Resolution and Adventure 1772-1775 (Hakluyt Soc. extra Ser. 36): Cambridge University Press

  5. Bobrowski N, Platt U (2007) SO2/BrO ratios studied in five volcanic plumes. J Volcanol Geotherm Res 166:147–160

  6. Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276

  7. Bobrowski N, von Glasow R, Aiuppa A, Inguaggiato S, Louban I, Ibrahim OW, Platt U (2007) Reactive halogen chemistry in volcanic plumes. J Geophys Res 112:D06311. doi:10.1029/2006JD007206

  8. Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann OC, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows JP (2003) Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J Photochem Photobio A: Chemistry 157:167–184

  9. Burton MR, Neri M, Andronico D, Branca S, Caltabiano T, Calvari S, Corsaro RA, Del Carlo P, Lanzafame G, Lodata L, Maraglia L, Salerno G, Spampinato L (2005) Etna 2004–2005: An archetype for geodynamically-controlled effusive eruptions. Geophys Res Lett 32:L09303. doi:10.1029/2005GL022527

  10. Carn SA, Bluth GJS (2003) Prodigious sulfur dioxide emissions from Nyamuragira volcano, D.R. Congo. Geophys Res Lett 30:2211. doi:10.1029/2003GL018465

  11. Carn SA (2004) Eruptive and passive degassing of sulphur dioxide at Nyiragongo Volcano (D. R. Congo): the 17th January 2002 eruption and its aftermath. Acta Vulcanol 14(15):75–86

  12. Carn S A, (2005a) TOMS volcanic image archive: http://toms.umbc.edu/archives.html. Cited 18 Feb 2009

  13. Carn SA, 2005b, NASA Earth Observatory. http://earthobservatory.nasa.gov/NaturalHazards/natural_hazards_v2.php3?img_id=12795. Cited 18 Feb 2009

  14. Crimp R, Cronin S, Charley D, Oppenheimer C, Bani P (2006) Dental fluorosis attributed to volcanic degassing on Ambrym, Vanuatu. In Abstracts of the 4th Cities on Volcanoes, Quito, 23-23 January 2006

  15. Cronin SJ, Sharp DS (2002) Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. Int J Environ Health Res 12:109–123

  16. Delgado-Granados H, Gardenas GL, Piedad SN (2001) Sulfur dioxide emissions from Popocatepetl volcano (Mexico): case study of a high-emission rate, passively degassing erupting volcano. J Volcanol Geotherm Res 108:107–120

  17. Edmonds M, Oppenheimer C, Pyle DM, Herd R (2003) Rainwater and ash leachate analysis as a proxy for plume chemistry at Soufrière Hills Volcano. Montserrat, in Volcanic degassing, Geol Soc Spec Pub 213:203–218

  18. Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks LA (2002) A miniaturised UV spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254. doi:10.1016/S0377-0273(02)00356-6

  19. Graf H-F, Feichter J, Langmann B (1997) Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J Geophys Res 102:10,727–10,738

  20. Halmer MM, Schmincke H-U, Graf H-F (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geotherm Res 115:511–528

  21. Kazahaya K (2005) Monitoring of volcanic gases at Miyakejima volcano, Japan, http://staff.aist.go.jp/kazahaya-k/miyakegas/COSPEC.html

  22. Kazahaya K, Shinohara H, Uto K, Odai M, Nakahori Y, Mori H, Lino H, Miyasshita M, Hirabayashi J (2004) Gigantic SO2 emission from Miyakejima volcano, Japan, caused by caldera collapse. Geology 32:425–428. doi:10.1130/G20399.1

  23. Kraus S (2006) DOASIS – A framework design for DOAS. Shaker Verlag, Aachen, p 184

  24. Krotkov NA, Carn SA, Krueger AJ, Bhartia PK, Yang K (2006) Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Trans Geosci Remote Sens, AURA Special Issue 44(5):1259–1266. doi:10.1109/TGRS.2005.861932

  25. Legrand D, Rouland D, Frogneux M, Carniel R, Charley D, Roult G, Robin C (2005) Interpretation of very long period tremors at Ambrym volcano, Vanuatu, as quasi-static displacement field related to two distinct magmatic sources. Geophys Res Lett 32:L06314. doi:10.1029/2004GL021968

  26. Mather TA, Pyle DM, Tsanev VI, McGonigle AJS, Oppenheimer C (2006) Allen AG (2006) A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J Volcanol Geotherm Res 149:297–311

  27. Monzier M, Robin C, Eissen JP, Cotton J (1997) Geochemistry vs. Seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J Volcanol Geotherm Res 78:1–29

  28. Nakada S, Nagai M, Kaneko T, Nozawa A, Suzuki-Kamata K (2004) Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan. Bull Volcanol 67:205–218

  29. Oppenheimer C, Tsanev VI, Braban CF, Cox RA, Adams JW, Aiuppa A, Bobrowski N, Delmelle P, Barclay J, McGonigle AJS (2006) BrO formation in volcanic plumes. Geochim Cosmochim Acta 70:2935–2941

  30. Platt U (1994) Differential optical absorption spectroscopy (DOAS). In: Sigrist MW (ed) Air monitoring by spectroscopic techniques. Wiley, New York, pp 27–84

  31. Platt U, Stutz J (2008) Differential Optical Absorption Spectroscopy: principles and applications, XV 597. Springer, Heidelberg, p 272

  32. Purey-Cust HE (1896) The eruption of Ambrym Island, New Hebrides, south-west Pacific, 1894. Geog J 8:585–602

  33. Roberts TJ (2009) The chemistry of volcanic plumes: reactive halogen formation and ozone depletion, PhD thesis, University of Cambridge.

  34. Roberts TJ., Braban CF, Martin RS, Oppenheimer C, Adams JW, Cox RA, Jones RL, Griffiths PT (2009) Formation of BrO and ClOx in volcanic plumes and chemical impacts on O3, Chem Geol (in press)

  35. Rufus J, Stark G, Smith PL, Pickering JC, Thorne AP (2003) High-resolution photoabsorption cross-section measurements of SO2, 2: 220 to 325 nm at 295 K. J Geophys Res 108:5011. doi:10.1029/2002JE001931

  36. Smithsonian Institution (2005) Ambrym, 05/2005, “Steady emissions of SO2 create health problems, destroy crops, and contaminate water. Bull Global Volcanism Network 30:05

  37. Van Roozendael M, Fayt C (2001) WinDOAS 2.1 software user manual, BIRA-IASB. Uccle, Brussels

  38. Wahner A, Ravishankara AR, Sander SP, Friedl RR (1988) Absorption cross section of BrO between 312 and 385 nm at 298 and 223 K. Chem Phys Lett 152:507–512

Download references

Acknowledgments

We gratefully acknowledge the support of the UK Natural Environment Research Council (grant NE/B504622/1 to CO), the Agence de Développement Economique de la Nouvelle Calédonie (to PB and ML) the US National Science Foundation (to J.A. Calkins), NASA for the OMI Science Team (to SAC), and the New Zealand Foundation for Research Science and Technology (to SJC). For providing the OMI instrument to NASA’s Aura mission, we acknowledge the Royal Netherlands Meteorological Institute (KNMI; OMI PI), the Dutch Space Agency (NIVR) and the Finnish Meteorological Institute (FMI).We thank G. Williams-Jones and an anonymous referee for their beneficial reviews, and P. Delmelle for editorial handling.

Author information

Correspondence to Philipson Bani.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bani, P., Oppenheimer, C., Tsanev, V.I. et al. Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu. Bull Volcanol 71, 1159 (2009). https://doi.org/10.1007/s00445-009-0293-7

Download citation

Keywords

  • Ambrym volcano
  • SO2 and BrO fluxes
  • DOAS
  • OMI