Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The November 2002 eruption of Piton de la Fournaise, Réunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions

  • 181 Accesses

  • 16 Citations


The November 2002 eruption of Piton de la Fournaise in the Indian Ocean was typical of the activity of the volcano from 1999 to 2006 in terms of duration and volume of magma ejected. The first magma erupted was a basaltic liquid with a small proportion of olivine phenocrysts (Fo81) that contain small numbers of melt inclusions. In subsequent flows, olivine crystals were more abundant and richer in Mg (Fo83–84). These crystals contain numerous melt and fluid inclusions, healed fractures, and dislocation features such as kink bands. The major element composition of melt inclusions in this later olivine (Fo83–84) is out of equilibrium with that of its host as a result of extensive post-entrapment crystallization and Fe2+ loss by diffusion during cooling. Melt inclusions in Fo81 olivine are also chemically out of equilibrium with their hosts but to a lesser degree. Using olivine–melt geothermometry, we determined that melt inclusions in Fo81 olivine were trapped at lower temperature (1,182 ± 1°C) than inclusions in Fo83–84 olivine (1,199–1,227°C). This methodology was also used to estimate eruption temperatures. The November 2002 melt inclusion compositions suggest that they were at temperatures between 1,070°C and 1,133°C immediately before eruption and quenching. This relatively wide temperature range may reflect the fact that most of the melt inclusions were from olivine in lava samples and therefore likely underwent minor but variable amounts of post-eruptive crystallization and Fe2+ loss by diffusion due to their relatively slow cooling on the surface. In contrast, melt inclusions in tephra samples from past major eruptions yielded a narrower range of higher eruption temperatures (1,163–1,181°C). The melt inclusion data presented here and in earlier publications are consistent with a model of magma recharge from depth during major eruptions, followed by storage, cooling, and crystallization at shallow levels prior to expulsion during events similar in magnitude to the relatively small November 2002 eruption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Albarède F, Luais B, Fitton G, Semet MP, Kaminski E, Upton BGJ, Bachèlery P, Cheminée JL (1997) The geochemical regimes of Piton de la Fournaise Volcano (Reunion) during the last 530,000 years. J Petrol 38:171–201

  2. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth; the case of the 1991–93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414. doi:10.1007/BF00320974

  3. Battaglia J, Ferrazzini V, Staudacher T, Aki K, Cheminée J-L (2005) Pre-eruptive migration of earthquakes at Piton de la Fournaise volcano (Réunion Island). Geophys J Int 161:549–558. doi:10.1016/j.jvolgeores.2005.04.005

  4. Bureau H, Métrich N, Pineau F, Semet MP (1998a) Magma–conduit interaction at Piton de la Fournaise volcano (Reunion Island): a melt and fluid inclusion study. J Volcanol Geotherm Res 84:39–60. doi:10.1016/S0377-0273(98)00029-8

  5. Bureau H, Pineau F, Métrich N, Semet MP, Javoy M (1998b) A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Reunion Island). Chem Geol 147:115–130. doi:10.1016/S0009-2541(97)00176-9

  6. Bureau H, Métrich N, Semet MP, Staudacher T (1999) Fluid–magma decoupling in a hot-spot volcano. Geophys Res Lett 26(23):3501–3504

  7. Clynne MA, Borg LE (1997) Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost Cascade Range, California: a reflection of relative fertility of the source. Can Mineral 35:453–472

  8. Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Capetta H (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet Sci Lett 80:361–374

  9. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83. doi:10.1007/PL00007664

  10. Danyushevsky LV, Sokolov S, Falloon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43:1651–1671

  11. Dixon JE, Pan V (1995) Determination of molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342

  12. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of the H2O and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility results. J Petrol 36:1607–1631

  13. Faure F, Trolliard G, Nicollet C, Montel JM (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145(2):251–263. doi:10.1007/s00410-003-0449-y

  14. Fisk MR, Upton BGJ, Ford CE (1988) Geochemical and experimental study of the genesis of magmas of Réunion Island, Indian Ocean. J Geophys Res 93:4933–4950

  15. Gallart J, Driad L, Charvis P, Sapin M, Hirn A, Diaz J, de Vogt B, Sachpazi M (1999) Perturbation to the lithosphere along the hotspot track of La Reunion, from an offshore–onshore seismic transect. J Geophys Res 104:2895–2908

  16. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake. Bull Volcanol 49:651–658. doi:10.1007/BF01080357

  17. Jendrzejewski N, Javoy M, Trull T (1996a) Mesures quantitatives de carbone et d’eau dans les verres basaltiques naturels par spectroscopie infrarouge, I. Le carbone. CR Acad Sci Paris 322:645–652

  18. Jendrzejewski N, Javoy M, Trull T (1996b) Mesures quantitatives de carbone et d’eau dans les verres basaltiques naturels par spectroscopie infrarouge, II. L’eau. CR Acad Sci Paris 322:735–742

  19. Longpré MA, Staudacher T, Stix J (2007) The November 2002 eruption at Piton de la Fournaise volcano, La Reunion Island: ground deformation, seismicity, and pit crater collapse. Bull Volcanol 69(5):511–525. doi:10.1007/s00445-006-0087-0

  20. Maurel C, Maurel P (1982) Etude expérimentale de l’équilibre Fe2+-Fe3+ dans les spinelles chromifères et les liquids silicates basiques coexistants à 1 atm. CR Acad Sci Paris 295:209–212

  21. Montierth C, Johnston AD, Cashman KV (1995) An empirical glass-composition-based geothermometer for Mauna Loa lavas. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Geophysical monograph, vol 92. AGU, Washington, DC, pp 207–217

  22. Nercessian A, Hirn A, Lepine JC, Sapin M (1996) Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution. J Volcanol Geotherm Res 70:123–143. doi:10.1016/0377-0273(95)00042-9

  23. Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604. doi:10.1016/S0098-3004(01)00081-4

  24. Óskarsson N (1994) Oxidation state of iron in mantle-derived magmas of the Icelandic rift zone. Hyper Interact 91:733–737

  25. Peltier A, Ferrazzini V, Staudacher T, Bachèlery P (2005) Imaging the dynamics of dyke propagation prior to the 2000–2003 flank eruptions at Piton de la Fournaise, Reunion Island. Geophys Res Lett 32:L22302. doi:10.1029/2005GL023720

  26. Peltier A, Staudacher T, Bachèlery P (2007) Constraints on magma transfers and structures involved in the 2003 activity at Piton de la Fournaise from displacement data. J Geophys Res 112:B03207. doi:10.1029/2006JB004379

  27. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de la Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2008.12.008

  28. Rhodes JM, Vollinger MJ (2005) Ferric/ferrous ratios in 1984 Mauna Loa lavas: a contribution to understanding the oxidation state of Hawaiian magmas. Contrib Mineral Petrol 149:666–674. doi:10.1007/s00410-005-0662-y

  29. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. doi:10.1007/BF00371276

  30. Sapin M, Hirn A, Lepine JC, Nercessian A (1996) Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano. J Volcanol Geotherm Res 70:145–147. doi:10.1016/0377-0273(95)00043-7

  31. Sobolev AV (2007) Melt inclusions and host olivines: what do they tell about mantle processes and sources? Geoch Cosmo Acta 71(15):A951 Suppl

  32. Staudacher T, Cheminée JL (2001) Eruptions during late March 2001 and on 11 June 2001. Bull Glob Volcanism Netw 26(5)

  33. Staudacher T, OVPDLF (2002) Fissure eruption 16 November–3 December sent lava to the sea. Bull Glob Volcanism Netw 27(11)

  34. Staudacher T, Bachèlery P, Semet MP, Cheminée JL (1998) Geophysical portrayal of the March fissure eruptions. Bull Glob Volcanism Netw 23(3)

  35. Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 105:8457–8472

  36. Upton BGJ, Wadsworth WJ (1966) The basalts of Reunion Island, Indian Ocean. Bull Volcanol 29:7–22. doi:10.1007/BF02597136

  37. Vlastélic I, Staudacher T, Semet M (2005) Rapid change of lava composition from 1998 to 2002 at Piton de la Fournaise (Réunion) inferred from Pb isotopes and trace elements: evidence for variable crustal contamination. J Petrol 46:79–107. doi:10.1093/petrology/egh062

  38. Vlastélic I, Peltier A, Staudacher T (2007) Short term (1998–2006) fluctuations of Pb isotopes at Piton de la Fournaise Volcano (Reunion Island); origins and constraints on the size and shape of the magma reservoir. Chem Geol 244:202–220. doi:10.1016/j.chemgeo.2007.06.015

Download references


We would like to thank Eric Delcher (Université de la Réunion), Jean-Louis Cheminée (Observatoire Volcanologique du Piton de la Fournaise), and Marc-Antoine Longpré (McGill University) for their help in the field and in sample collection. Patrick Bachèlery (Université de la Réunion) provided important guidance and support. We are very grateful to Jim Clark (McGill University) and John Donovan (University of Oregon) for performing the microprobe analyses. Discussions with Don Baker and David Dolejs (McGill University) helped clarify issues of olivine crystallization. Comments by Hélene Bureau and formal reviews by Keith Putirka, Ivan Vlastélic, and Peter Michael greatly improved the final manuscript.

The project was supported by a Natural Sciences and Engineering Research Council of Canada Undergraduate Student Research Award to NV and Discovery grant to AEW-J as well as travel funds provided by the Office Franco-Québécois de la Jeunesse awarded to NV.

Author information

Correspondence to Nathalie Vigouroux.

Additional information

Editorial responsibility: M. Clynne

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vigouroux, N., Williams-Jones, A.E., Wallace, P. et al. The November 2002 eruption of Piton de la Fournaise, Réunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions. Bull Volcanol 71, 1077 (2009). https://doi.org/10.1007/s00445-009-0287-5

Download citation


  • Piton de la Fournaise
  • Volcanic plumbing system
  • Melt inclusions
  • Olivine cumulates
  • Post-entrapment modifications
  • Volatiles
  • Magma evolution