Advertisement

Oecologia

pp 1–14 | Cite as

Resource availability drives trait composition of butterfly assemblages

  • Chensheng Zhang
  • Josef Settele
  • Wenhao Sun
  • Martin Wiemers
  • Yalin ZhangEmail author
  • Oliver Schweiger
Community ecology – original research
  • 93 Downloads

Abstract

How species respond to environmental change is a fundamental question in ecology and species traits can help to tackle this question. In this study, we analyze how the functional structure of species assemblages changes with selected environmental variables along an elevational gradient. In particular, we used species traits of local butterfly communities (body size, voltinism, overwintering stages, and host specificity) in a national nature reserve in China to assess the impacts of temperature, net primary productivity, and land use. Our results show that productivity, measured as NDVI, had a stronger influence on the functional community structure of butterflies than temperature. Within the butterfly assemblages, net primary productivity mainly affected body size and supported few but large species. Length of vegetation period demonstrated dominating effects on the functional structure of local butterfly assemblages. However, an observed increase in dietary generalists with longer vegetation periods contradicted expectations based on niche breadth hypothesis, that more stable conditions should favor specialists. Furthermore, the general positive impact of vegetation period on species abundances differed considerably among functional groups. Only the group containing species hibernating as egg decreased with the length of vegetation period. Our results suggest that trait associations are instructive to explain environment–herbivore relationships, that resource availability can predominantly influence the functional composition of herbivore assemblages, and that conservation priority should be given to specialist butterfly species overwintering as egg, especially in the face of global warming.

Keywords

Alpine insects China Environmental drivers Functional diversity GLMs 

Notes

Acknowledgements

CZ thanks YZ and JS who provided supervision for CZ’s Ph.D. study. We acknowledge Foping National Nature Reserve for support and convenience for the field work. CZ appreciates the support from his parents carrying the burden of CZ’s university fees.

Author contribution statement

CZ, YZ, JS, OS, and MW conceived ideas. CZ collected and analyzed the data. CZ and WS identified butterflies. WS provided parts of trait records. The manuscript was written by CS and was commented by all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human rights and animal participants

No experiments with animals were conducted for this study.

Supplementary material

442_2019_4454_MOESM1_ESM.docx (399 kb)
Supplementary material 1 (DOCX 398 kb)

References

  1. Aava B (2001) Primary productivity can affect mammalian body size frequency distributions. Oikos 93:205–212.  https://doi.org/10.1034/j.1600-0706.2001.930204.x CrossRefGoogle Scholar
  2. Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc Biol Sci 277:1281–1287.  https://doi.org/10.1098/rspb.2009.1910 CrossRefGoogle Scholar
  3. Arnold TW (2010) Uninformative parameters and model selection using akaike’s information criterion. J Wildl Manag 74:1175–1178.  https://doi.org/10.2193/2009-367 CrossRefGoogle Scholar
  4. Bartoń K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn
  5. Bergmann C (1847) Ueber die Verhältnisse der wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3:589–708Google Scholar
  6. Bickford D et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155.  https://doi.org/10.1016/j.tree.2006.11.004 CrossRefGoogle Scholar
  7. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Animal Ecol 17:15.  https://doi.org/10.2307/1605 CrossRefGoogle Scholar
  8. Bozano GC (1999–2013) Guide to the Butterflies of the Palearctic Region, book series. Omnes Artes, MilanGoogle Scholar
  9. Brändle M, Stadler J, Brandl R (2000) Body size and host range in European Heteroptera. Ecography 23:139–147.  https://doi.org/10.1111/j.1600-0587.2000.tb00269.x CrossRefGoogle Scholar
  10. Breed GA, Stichter S, Crone EE (2012) Climate-driven changes in northeastern US butterfly communities. Nat Clim Change 3:142–145.  https://doi.org/10.1038/nclimate1663 CrossRefGoogle Scholar
  11. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789.  https://doi.org/10.1890/03-9000 CrossRefGoogle Scholar
  12. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3:1–27.  https://doi.org/10.1080/03610927408827101 CrossRefGoogle Scholar
  13. Carl G, Doktor D, Schweiger O, Kühn I (2016) Assessing relative variable importance across different spatial scales: a two-dimensional wavelet analysis. J Biogeogr 43:2502–2512.  https://doi.org/10.1111/jbi.12781 CrossRefGoogle Scholar
  14. Chou I (2001) Monographia rhopalocerorum sinensium, 2nd edn. Henan Science and Technology Publishing House, ZhengzhouGoogle Scholar
  15. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos Soc 85:139–169.  https://doi.org/10.1111/j.1469-185X.2009.00097.x CrossRefGoogle Scholar
  16. Davis RB, Ounap E, Javois J, Gerhold P, Tammaru T (2013) Degree of specialization is related to body size in herbivorous insects: a phylogenetic confirmation. Evolution 67:583–589.  https://doi.org/10.1111/j.1558-5646.2012.01776.x CrossRefGoogle Scholar
  17. de Bello F et al (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402.  https://doi.org/10.1111/j.1600-0587.2012.07438.x CrossRefGoogle Scholar
  18. Dennis RLH, Hodgson JG, Hardy PB, Dapporto L (2012) Strategies for size and growth in butterflies (Insecta: Lepidoptera): counterintuitive trends and unique solutions to achieving maturity. J Nat Hist 46:2415–2437.  https://doi.org/10.1080/00222933.2012.707250 CrossRefGoogle Scholar
  19. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:10.  https://doi.org/10.18637/jss.v022.i04 CrossRefGoogle Scholar
  20. Dyer LA et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699.  https://doi.org/10.1038/nature05884 CrossRefGoogle Scholar
  21. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci 97:9115–9120.  https://doi.org/10.1073/pnas.97.16.9115 CrossRefGoogle Scholar
  22. Evans KL, Greenwood JJ, Gaston KJ (2005a) Dissecting the species-energy relationship. Proc Biol Sci 272:2155–2163.  https://doi.org/10.1098/rspb.2005.3209 CrossRefPubMedCentralGoogle Scholar
  23. Evans KL, Warren PH, Gaston KJ (2005b) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25.  https://doi.org/10.1017/S1464793104006517 CrossRefGoogle Scholar
  24. Fox LR, Morrow PA (1981) Specialization: species property or local phenomenon? Science 211:887–893.  https://doi.org/10.1126/science.211.4485.887 CrossRefGoogle Scholar
  25. GarcÍA-Barros E (1997) Uncertain branch lengths, taxonomic sampling error, and the egg to body size allometry in temperate butterflies (Lepidoptera). Biol J Lin Soc 61:201–221.  https://doi.org/10.1006/bijl.1996.0110 CrossRefGoogle Scholar
  26. García-Barros E (2000) Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol J Linn Soc 70:251–284.  https://doi.org/10.1111/j.1095-8312.2000.tb00210.x CrossRefGoogle Scholar
  27. Gaston KJ, Reavey D (1989) Patterns in the life histories and feeding strategies of British macrolepidoptera. Biol J Lin Soc 37:367–381.  https://doi.org/10.1111/j.1095-8312.1989.tb01912.x CrossRefGoogle Scholar
  28. Gérard M et al (2018) Patterns of size variation in bees at a continental scale: does Bergmann’s rule apply? Oikos 127:1095–1103.  https://doi.org/10.1111/oik.05260 CrossRefGoogle Scholar
  29. Gotthard K (2008) Adaptive Growth Decisions in Butterflies. Bioscience 58:222–230.  https://doi.org/10.1641/b580308 CrossRefGoogle Scholar
  30. Gutierrez D, Menendez R (1995) Distribution and abundance of butterflies in a mountain area in the northern Iberian peninsula. Ecography 18:209–216.  https://doi.org/10.1111/j.1600-0587.1995.tb00123.x CrossRefGoogle Scholar
  31. Hamel S, Garel M, Festa-Bianchet M, Gaillard J-M, Côté SD (2009) Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J Appl Ecol 46:582–589.  https://doi.org/10.1111/j.1365-2664.2009.01643.x CrossRefGoogle Scholar
  32. Hawkins BA (2010) Multiregional comparison of the ecological and phylogenetic structure of butterfly species richness gradients. J Biogeogr 37:647–656.  https://doi.org/10.1111/j.1365-2699.2009.02250.x CrossRefGoogle Scholar
  33. Hayes JL (1982) A study of the relationships of diapause phenomena and other life history characters in temperate butterflies. Am Nat 120:160–170.  https://doi.org/10.1086/283979 CrossRefGoogle Scholar
  34. Hennig C (2015) fpc: Flexible Procedures for Clustering. R package version 2.1-10. https://CRAN.R-project.org/package=fpc
  35. Hewitt G (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Lin Soc 58:247–276.  https://doi.org/10.1006/bijl.1996.0035 CrossRefGoogle Scholar
  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  37. Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25:249.  https://doi.org/10.2307/1219449 CrossRefGoogle Scholar
  38. Hunter MD, McNeil JN (1997) Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore. Ecology 78:977–986.  https://doi.org/10.1890/0012-9658(1997)078%5b0977:hpqida%5d2.0.co;2 CrossRefGoogle Scholar
  39. Inomata T (1990) Keys to the Japanese butterflies in natural color. Hokuryukan, JapanGoogle Scholar
  40. Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273.  https://doi.org/10.1146/annurev.es.21.110190.001331 CrossRefGoogle Scholar
  41. Kawazoe A, Wakabayashi M (1976) Coloured illustrations of the butterflies of Japan. Hoikusha Publishing Co. Ltd, OsakaGoogle Scholar
  42. Koiwaya S (2007) The zephyrus hairstreaks of the world. Mushi-sha, JapanGoogle Scholar
  43. Kuussaari M, Heliölä J, Pöyry J, Saarinen K (2007) Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11:351–366.  https://doi.org/10.1007/s10841-006-9052-7 CrossRefGoogle Scholar
  44. Lang S-Y (2012) The Nymphalidae of China (Lepidoptera, Rhopalocera). Tshikolovets, Czech RepGoogle Scholar
  45. Leather SR, Walters KFA, Bale JS (1995) The ecology of insect overwintering. Cambridge University Press, CambridgeGoogle Scholar
  46. Leingartner A, Hoiss B, Krauss J, Steffan-Dewenter I (2014a) Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants. PLoS One 9:e93881.  https://doi.org/10.1371/journal.pone.0093881 CrossRefPubMedCentralGoogle Scholar
  47. Leingartner A, Krauss J, Steffan-Dewenter I (2014b) Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175:613–623.  https://doi.org/10.1007/s00442-014-2917-7 CrossRefGoogle Scholar
  48. Levanoni O, Levin N, Pe’er G, Turbé A, Kark S (2011) Can we predict butterfly diversity along an elevation gradient from space? Ecography 34:372–383.  https://doi.org/10.1111/j.1600-0587.2010.06460.x CrossRefGoogle Scholar
  49. Liu S, Zhang J (2003) Biodiverisity research and conservation of foping natural reserve. Shaanxi Science and Technology Press, BeijingGoogle Scholar
  50. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2017) cluster: Cluster Analysis Basics and Extensions. R package version 2.0.6Google Scholar
  51. Mani MS (1968) Ecology and biogeography of high altitude insects. Springer, DordrechtCrossRefGoogle Scholar
  52. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161.  https://doi.org/10.1146/annurev.es.11.110180.001003 CrossRefGoogle Scholar
  53. Mousseau TA (1997) Ectotherms follow the converse to bergmann’s rule. Evolution 51:630–632.  https://doi.org/10.1111/j.1558-5646.1997.tb02453.x CrossRefGoogle Scholar
  54. Muller-Scharer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422.  https://doi.org/10.1016/j.tree.2004.05.010 CrossRefGoogle Scholar
  55. Novotny V et al (2005) An altitudinal comparison of caterpillar (Lepidoptera) assemblages on Ficus trees in Papua New Guinea. J Biogeogr 32:1303–1314.  https://doi.org/10.1111/j.1365-2699.2005.01225.x CrossRefGoogle Scholar
  56. Novotny V et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118.  https://doi.org/10.1126/science.1129237 CrossRefGoogle Scholar
  57. Öckinger E et al (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979Google Scholar
  58. Olson VA et al (2009) Global biogeography and ecology of body size in birds. Ecol Lett 12:249–259.  https://doi.org/10.1111/j.1461-0248.2009.01281.x CrossRefGoogle Scholar
  59. Papanikolaou AD, Kühn I, Frenzel M, Schweiger O, Kleijn D (2017) Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol 54:527–536.  https://doi.org/10.1111/1365-2664.12763 CrossRefGoogle Scholar
  60. Pellissier L et al (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825.  https://doi.org/10.1002/ece3.296 CrossRefPubMedCentralGoogle Scholar
  61. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510.  https://doi.org/10.1016/j.tree.2005.05.011 CrossRefGoogle Scholar
  62. Pollard E, Yates T (1997) Monitoring butterflies for ecology and conservation. Springer, New YorkGoogle Scholar
  63. R Core Team (2017) R: a language and environment for statistical computing, R foundation for statistical computingGoogle Scholar
  64. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188.  https://doi.org/10.1007/s00442-011-1965-5 CrossRefGoogle Scholar
  65. Rodriguez-Castaneda G, Dyer LA, Brehm G, Connahs H, Forkner RE, Walla TR (2010) Tropical forests are not flat: how mountains affect herbivore diversity. Ecol Lett 13:1348–1357.  https://doi.org/10.1111/j.1461-0248.2010.01525.x CrossRefGoogle Scholar
  66. Rosenzweig ML (1968) The strategy of body size in mammalian carnivores. Am Midl Nat 80:299.  https://doi.org/10.2307/2423529 CrossRefGoogle Scholar
  67. Schweiger O et al (2007) Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116:461–472CrossRefGoogle Scholar
  68. Scoble MJ (1992) The lepidoptera. Form, function and diversity. Oxford University Press, OxfordGoogle Scholar
  69. Settele J et al (2008) Climatic risk atlas of European butterflies. BioRisk 1:1–710CrossRefGoogle Scholar
  70. Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180:511–519.  https://doi.org/10.1086/667595 CrossRefGoogle Scholar
  71. Shirozu T (1960) Butterflies of Formosa in Colour. Hoikusha Publishing Co. Ltd, TokyoGoogle Scholar
  72. Sømme L (1982) Supercooling and winter survival in terrestrial arthropods. Comp Biochem Physiol A Physiol 73:519–543.  https://doi.org/10.1016/0300-9629(82)90260-2 CrossRefGoogle Scholar
  73. Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363.  https://doi.org/10.1111/j.1600-0587.2010.06264.x CrossRefGoogle Scholar
  74. Virtanen T, Neuvonen S (1999) Climate change and macrolepidopteran biodiversity in Finland. Chemosp Glob Change Sci 1:439–448.  https://doi.org/10.1016/s1465-9972(99)00039-2 CrossRefGoogle Scholar
  75. Wallisdevries MF, Van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Change Biol 12:1620–1626.  https://doi.org/10.1111/j.1365-2486.2006.01202.x CrossRefGoogle Scholar
  76. White EP, Ernest SK, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330.  https://doi.org/10.1016/j.tree.2007.03.007 CrossRefGoogle Scholar
  77. Yuan F, Yuan X, Xue G (2015) Fauna sinica insecta lepidoptera hesperiidae. Editorial committee of fauna sinicaGoogle Scholar
  78. Zeuss D, Brunzel S, Brandl R (2017) Environmental drivers of voltinism and body size in insect assemblages across Europe. Glob Ecol Biogeogr 26:154–165.  https://doi.org/10.1111/geb.12525 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chensheng Zhang
    • 1
    • 2
  • Josef Settele
    • 2
    • 3
    • 4
  • Wenhao Sun
    • 5
  • Martin Wiemers
    • 2
  • Yalin Zhang
    • 1
    Email author
  • Oliver Schweiger
    • 2
  1. 1.Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Department of Community EcologyUFZ, Helmholtz Centre for Environmental ResearchHalleGermany
  3. 3.iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-LeipzigLeipzigGermany
  4. 4.Institute of Biological Sciences, College of Arts and SciencesUniversity of the PhilippinesLos BanosPhilippines
  5. 5.College of Water Resources and Architectural EngineeringNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations