, Volume 188, Issue 2, pp 501–513 | Cite as

Scale-dependent effects of conspecific flower availability on pollination quantity and quality in an invasive shrub

  • L. CavalleroEmail author
  • C. L. Morales
  • A. Montero-Castaño
  • J. H. Gowda
  • M. A. Aizen
Plant-microbe-animal interactions - original research


Pollen limitation can strongly influence reproduction of pollinator-dependent plants. Flower abundance can affect pollination ‘quantity’ and ‘quality’ due to its influence on pollen availability and foraging patterns of pollinators, ultimately impacting on seed production. We complemented individual-based measurements with landscape-level metrics to assess the influence of conspecific flower availability at different spatial scales on the quantity and quality components of pollination, and their impact on seed production in the invasive shrub Cytisus scoparius. In 2013–2014, we sampled 40 C. scoparius populations in Nahuel Huapi National Park, Patagonia (Argentina). In each population, we estimated the proportion of tripped flowers, fruit- and seed-set in five randomly selected individuals. The proportion of tripped flowers and the proportion of them setting fruit were used as proxies of pollination quantity and quality, respectively. Conspecific flower availability at distinct spatial scales (5–1000 m) was estimated as the area covered by flowering C. scoparius from color aerial photographs. Flower availability influenced seed output due to contrasting scale-dependent effects on pollination quantity and quality. Increasing flower availability at the landscape-scale reduced pollination quantity, whereas at the neighborhood-scale it increased pollination quality. The overall positive effect of flower availability on seed output at the neighborhood scale was slightly higher than the overall negative effect at the landscape scale. Moreover, pollination quality had a higher positive effect on seed output than pollination quantity. Our results demonstrate that pollination quality may severely limit plant reproduction. Pollination quality limitation can act independently of pollination quantity limitation because these factors operate at different spatial scales.


Cytisus scoparius Floral display Pollination limitation Reproductive success Spatial scale 



We thank Matías Carruitero and Mailén Latorre for helping with fieldwork, Gustavo Santamaria for providing the aerial photographs and Anabella Fantozzi for digitalization of aerial photographs. Gabriela Gleiser, Vanina Chalcoff and José Vesprini provided valuable comments and suggestions on an earlier draft. We also thank the National Park Administration of Argentina (APN) for allowing us to work in Nahuel Huapi National Park. This study was funded by PICT 2012-3015 to CLM and MAA. LC, CLM, JHG and MAA are researchers at the National Research Council of Argentina (CONICET). AMC was supported by a JAE-predoc fellowship and by an Alien Challenge COST-Action Short Term Scientific Mission.

Author contribution statement

LC, CLM and MAA conceived the ideas and designed methodology; LC and AMC collected the data; LC and JHG analysed the data; LC, CLM and MAA led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary material

442_2018_4239_MOESM1_ESM.docx (3.5 mb)
Supplementary material 1 (DOCX 3601 kb)


  1. Agren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790. CrossRefGoogle Scholar
  2. Aizen MA (1997) Influence of local floral density and sex ratio on pollen receipt and seed output: empirical and experimental results in dichogamous Alstroemeria aurea (Alstroemeriaceae). Oecologia 111:404–412. CrossRefPubMedGoogle Scholar
  3. Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281. CrossRefPubMedGoogle Scholar
  4. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:e31. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aizen MA, Smith-Ramírez C, Morales CL, Vieli L, Sáez A, Barahona-Segovia RM, Arbetman MP, Montalva J, Garibaldi LA, Inouye DW, Harder LD (2018) Coordinated global species-importation policies are needed to reduce serious invasions globally: the case of alien bumble bees in South America. J Appl Ecol 00:1–7. CrossRefGoogle Scholar
  6. Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421. CrossRefGoogle Scholar
  7. Barros VR, Cordon V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Universidad Nacional del Comahue, NeuquénGoogle Scholar
  8. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48CrossRefGoogle Scholar
  9. Bjerknes AL, Totland Ø, Hegland SJ, Nielsen A (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138:1–12. CrossRefGoogle Scholar
  10. Bode RF, Tong R (2017) Pollinators exert positive selection on flower size on urban, but not on rural Scotch broom (Cytisus scoparius L. Link). J Plant Ecol. CrossRefGoogle Scholar
  11. Bolker BM, Fournier D, Skaug H, Magnusson A, Nielsen A (2012) Generalized linear mixed models using AD model builder. R package version 2.15Google Scholar
  12. Bosch M, Waser NM (1999) Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae). Am J Bot 86:871–879. CrossRefPubMedGoogle Scholar
  13. Bosch M, Waser NM (2001) Experimental manipulation of plant density and its effect on pollination and reproduction of two confamilial montane herbs. Oecologia 126:76–83. CrossRefPubMedGoogle Scholar
  14. Bossard CC, Rejmanek M (1994) Herbivory, growth, seed production, and resprouting of an exotic invasive shrub Cytisus scoparius. Biol Conserv 67:193–200. CrossRefGoogle Scholar
  15. Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83:2328–2336.;2 CrossRefGoogle Scholar
  16. Caldwell BA (2006) Effects of invasive scotch broom on soil properties in a pacific coastal prairie soil. Appl Soil Ecol 32:149–152. CrossRefGoogle Scholar
  17. Chittka L, Gumbert A, Kunze J (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 8:239–249. CrossRefGoogle Scholar
  18. Colling G, Reckinger C, Matthies D (2004) Effects of pollen quantity and quality on reproduction and offspring vigor in the rare plant Scorzonera humilis (Asteraceae). Am J Bot 91:1774–1782. CrossRefPubMedGoogle Scholar
  19. Cordero RL, Torchelsen FP, Overbeck GE, Anand M (2016) Cytisus scoparius (Fam. Fabaceae) in southern Brazil-first step of an invasion process? Anais Acad Brasileira Ciências 88:149–154. CrossRefGoogle Scholar
  20. Downey PO, Smith JMB (2000) Demography of the invasive shrub scotch broom (Cytisus scoparius) at Barrington Tops, New South Wales: insights for management. Austral Ecol 25:477–485. CrossRefGoogle Scholar
  21. Ehlers BK, Olesen JM, Ågren J (2002) Floral morphology and reproductive success in the orchid Epipactis helleborine: regional and local across-habitat variation. Plant Syst Evol 236:19–32. CrossRefGoogle Scholar
  22. Fernández N (2007) Plantas exóticas invasoras de los parques nacionales de Patagonia. Delegación Regional Patagonia (APN)-Universidad Nacional del Comahue (UNCOMA)Google Scholar
  23. Fogarty G, Facelli JM (1999) Growth and competition of Cytisus scoparius, an invasive shrub, and australian native shrubs. Plant Ecol 144:27–35. CrossRefGoogle Scholar
  24. Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072. CrossRefPubMedGoogle Scholar
  25. Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R et al (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12:439–447. CrossRefGoogle Scholar
  26. Garibaldi LA, Gemmill-Herren B, D’Annolfo R, Graeub BE, Cunningham SA, Breeze TD (2017) Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol Evol 32:68–80. CrossRefPubMedGoogle Scholar
  27. Gavini SS, Farji-Brener AG (2015) La importancia del color: morfos florales, tasas de visita y éxito reproductivo en el arbusto Sarothamnus scoparius. Ecol Austral 25:204–211Google Scholar
  28. Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev Camb Philos Soc 80:413–443. CrossRefPubMedGoogle Scholar
  29. Gillespie SD, Bayley J, Elle E (2017) Native bumble bee (Hymenoptera: Apidae) pollinators vary in floral resource use across an invasion gradient. Can Entomol 149:204–213. CrossRefGoogle Scholar
  30. Goulson D (2005) Risks of increased weed problems associated with introduction of non-native bee species. J Food Agric Environ 3: 11–13. Accessed 26 July 2018
  31. Goverde M, Schweizer K, Baur B, Erhardt A (2002) Small-scale habitat fragmentation effects on pollinator behaviour: experimental evidence from the bumblebee Bombus veteranus on calcareous grasslands. Biol Conserv 104:293–299. CrossRefGoogle Scholar
  32. Green DR, Cummins R, Right R, Miles J (1993) A methodology for acquiring information on vegetation succession from remotely sensed imagery. In: Haines-Young R, Green DR, Cousins S (eds) Landscape ecology and GIS. Taylor and Francis, London, pp 111–128Google Scholar
  33. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc Lond B Biol Sci. CrossRefGoogle Scholar
  34. IPBES (2016) Chapter 1 - Background to pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, p 552Google Scholar
  35. Jakobsson A, Lázaro A, Totland Ø (2009) Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs. Oecologia 160:707–719. CrossRefPubMedGoogle Scholar
  36. Kadmon R, Harari-Kremer R (1999) Studying long-term vegetation dynamics using digital processing of historical aerial photographs. Remote Sens Environ 68:164–176. CrossRefGoogle Scholar
  37. Kandori I, Hirao T, Matsunaga S, Kurosaki T (2009) An invasive dandelion unilaterally reduces the reproduction of a native congener through competition for pollination. Oecologia 159:559–569. CrossRefPubMedGoogle Scholar
  38. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. CrossRefGoogle Scholar
  39. Knight TM (2003) Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia 135:557–563. CrossRefGoogle Scholar
  40. Kolb A (2005) Reduced reproductive success and offspring survival in fragmented populations of the forest herb Phyteuma spicatum. J Ecol 93:1226–1237. CrossRefGoogle Scholar
  41. Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed-set. Ecology 74:2145–2160. CrossRefGoogle Scholar
  42. Kunin WE (1997) Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 85:225–234CrossRefGoogle Scholar
  43. Mayer C, Michez D, Chyzy A, Brédat E, Jacquemart AL (2012) The abundance and pollen foraging behaviour of bumble bees in relation to population size of whortleberry (Vaccinium uliginosum). PLoS ONE 7:e50353. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Morales CL, Aizen MA (2002) Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the southern Andes. Biol Invations 4:87–100. CrossRefGoogle Scholar
  45. Morales CL, Traveset A (2008) Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci 27:221–238. CrossRefGoogle Scholar
  46. Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728. CrossRefPubMedGoogle Scholar
  47. Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534. CrossRefGoogle Scholar
  48. Morales CL, Saez A, Arbetman MP, Cavallero L, Aizen MA (2014) Detrimental effects of volcanic ash deposition on bee fauna and plant-pollinator interactions. Ecol Austral 24:42–50Google Scholar
  49. Muir JL, Vamosi JC (2015) Invasive Scotch broom (Cytisus scoparius, Fabaceae) and the pollination success of three Garry oak-associated plant species. Biol Invations 17:2429–2446. CrossRefGoogle Scholar
  50. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds DR, Edwards AS (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. CrossRefGoogle Scholar
  51. Parker IM (1997) Pollinator limitation of Cytisus scoparius (scotch broom), an invasive exotic shrub. Ecology 78:1457–1470.;2 CrossRefGoogle Scholar
  52. Parker IM (2000) Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecol Appl 10:726–743.;2 CrossRefGoogle Scholar
  53. Parker IM, Haubensak KA (2002) Comparative pollinator limitation of two non-native shrubs: do mutualisms influence invasions? Oecologia 130:250–258. CrossRefPubMedGoogle Scholar
  54. Paynter Q, Main A, Hugh Gourlay A, Peterson PG, Fowler SV, Buckley YM (2010) Disruption of an exotic mutualism can improve management of an invasive plant: varroa mite, honeybees and biological control of Scotch broom Cytisus scoparius in New Zealand. J Appl Ecol 47:309–317. CrossRefGoogle Scholar
  55. Pérez A (2008) Reserva de la Biosfera Andino Norpatagonica. In: Karez CS, Schüttler E (eds) Especies exóticas invasoras en las Reservas de Biosfera de América Latina y el Caribe. Un informe técnico para fomentar el intercambio de experiencias entre las Reservas de Biosfera y promover el manejo efectivo de las invasiones biológicas. UNESCO, MontevideoGoogle Scholar
  56. Potter KJB, Kriticos DJ, Watt MS, Leriche A (2009) The current and future potential distribution of Cytisus scoparius: a weed of pastoral systems, natural ecosystems and plantation forestry. Weed Res 49:271–282. CrossRefGoogle Scholar
  57. R Development Core Team (2012) R: a language and environment forstatistical computing. Version 2.15.1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  58. Rathcke B (1983) Competition and facilitation among plants for pollination. In: Real E (ed) Pollination biology. Academic Press, Orlando, pp 305–329CrossRefGoogle Scholar
  59. Riedinger V, Renner M, Rundlöf M, Steffan-Dewenter I, Holzschuh A (2014) Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecol 29:425–435. CrossRefGoogle Scholar
  60. Sargent RD, Angert AL, Williams JL (2017) When are species invasions useful for addressing fundamental questions in plant biology? Am J Bot 104:797–799. CrossRefPubMedGoogle Scholar
  61. Schmitt J (1980) Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34:934–943. CrossRefPubMedGoogle Scholar
  62. Sheppard AW, Hodge P, Paynter Q, Rees M (2002) Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J Appl Ecol 39:721–734. CrossRefGoogle Scholar
  63. Shipley B (2000) Cause and correlation in biology. A user’s guide to path analysis, structural equations and causal inference with R. Cambridge University Press, Cambridge, pp 1–63Google Scholar
  64. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Inv 1:21–32. CrossRefGoogle Scholar
  65. Simpson SR, Gross CL, Silberbauer LX (2005) Broom and honeybees in Australia: an alien liaison. Plant Biol 7:541–548. CrossRefPubMedGoogle Scholar
  66. Smith JMB, Harlen RL (1991) Preliminary observations on the seed dynamics of broom (Cytisus scoparius) at Barrington Tops, New South Wales. Plant Prot Q 6:73–78Google Scholar
  67. Souto CP, Aizen MA, Premoli AC (2002) Effects of crossing distance and genetic relatedness on pollen performance in Alstroemeria aurea (Alstroemeriaceae). Am J Bot 89:427–432. CrossRefPubMedGoogle Scholar
  68. Spigler RB, Chang SM (2008) Effects of plant abundance on reproductive success in the biennial Sabatia angularis (Gentianaceae): spatial scale matters. J Ecol 96:323–333. CrossRefGoogle Scholar
  69. Steffan-Dewenter I, Münzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc Lond B Biol Sci 268:1685–1690. CrossRefGoogle Scholar
  70. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432.;2 CrossRefGoogle Scholar
  71. Stout J (2000) Does size matter? Bumblebee behaviour and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie 31:129–139. CrossRefGoogle Scholar
  72. Suzuki N (2000) Pollinator limitation and resource limitation of seed production in the scotch broom, Cytisus scoparius (Leguminosae). Plant Species Biol 15:187–193. CrossRefGoogle Scholar
  73. Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006) Pollination decays in biodiversity hotspots. Proc Nat Acad Sci 103:956–961. CrossRefPubMedGoogle Scholar
  74. Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. CrossRefGoogle Scholar
  75. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbroocks R (1997) Introduced species: a significant component of human-caused global change. NZ J Ecol 21:1–16Google Scholar
  76. Waites AR, Ågren J (2004) Pollinator visitation, stigmatic pollen loads and among-population variation in seed set in Lythrum salicaria. J Ecol 92:512–526. CrossRefGoogle Scholar
  77. Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J Appl Entom 124:299–306. CrossRefGoogle Scholar
  78. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, 574 pCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Científico Tecnológico (CCT) CONICET CórdobaBuenos AiresArgentina
  2. 2.Estación Forestal INTA-Villa Dolores (EEA Manfredi)Villa DoloresArgentina
  3. 3.Laboratorio Ecotono, INIBIOMAUniversidad Nacional del Comahue, CONICETBarilocheArgentina
  4. 4.Estación Biológica de Doñana (EBD-CSIC)SevilleSpain
  5. 5.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations