Skip to main content

Advertisement

Log in

Temperature effects on a marine herbivore depend strongly on diet across multiple generations

  • SPECIAL TOPIC: FROM PLANTS TO HERBIVORES
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increasing sea surface temperatures are predicted to alter marine plant–herbivore interactions and, thus, the structure and function of algal and seagrass communities. Given the fundamental role of host plant quality in determining herbivore fitness, predicting the effects of increased temperatures requires an understanding of how temperature may interact with diet quality. We used an herbivorous marine amphipod, Sunamphitoe parmerong, to test how temperature and diet interact to alter herbivore growth, feeding rates, survival, and fecundity in short- and long-term assays. In short-term thermal stress assays, S. parmerong was tolerant to the range of temperatures that it currently experiences in nature (20–26 °C), with mortality at temperatures > 27 °C. In longer term experiments, two generations of S. parmerong were reared in nine combinations of temperature (ambient, + 2, + 4 °C) and diet (two high- and one low-quality algal species) treatments. Temperature and diet interacted to determine total numbers of amphipods in the F1 generation and the potential F2 population size (sum of brooded eggs and newly hatched juveniles). The size and development rate of F1 individuals were affected by diet, but not temperature. Consumption rates per capita were highest at intermediate temperatures but could not explain the observed differences in survival. Our results show that predicting the effects of increasing temperature on marine herbivores will be complicated by variation in host plant quality, and that climate-driven changes to plant availability will affect herbivore performance, and thus the strength of plant–herbivore interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported by a Grant from the Australian Research Council (DP150102771). We thank S. Dworjanyn (Southern Cross University) for the assistance with carbon and nitrogen measurements, E. Sotka (College of Charleston) for comments that improved this manuscript, N. Coombes and A. Niccum (Sydney Institute of Marine Science) for the help with aquarium facilities, T. Stelling-Wood, B. Lanham, and L. Martin (University of New South Wales) for the experiment and field support, and J. Harianto (University of Sydney) for harbour temperature data. We thank C. Müller and three anonymous reviewers for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JL, MB, and AGBP conceived and designed the experiments. JL performed the experiments and analyzed the data. JL and AGBP wrote the manuscript and MB provided editorial contributions.

Corresponding author

Correspondence to Janine Ledet.

Additional information

Communicated by Caroline Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledet, J., Byrne, M. & Poore, A.G.B. Temperature effects on a marine herbivore depend strongly on diet across multiple generations. Oecologia 187, 483–494 (2018). https://doi.org/10.1007/s00442-018-4084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4084-8

Keywords

Navigation