Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints

Abstract

Studying the dynamics of species’ borders can provide insight into the mechanisms limiting or promoting range expansion in response to environmental change. In the John Day River, Oregon (USA), rising stream temperatures are facilitating the upstream expansion of invasive smallmouth bass Micropterus dolomieu. Here, where smallmouth bass occupy the upstream limit of its thermal tolerance, we explore population structure and seasonal movement patterns to elucidate the environmental conditions and individual traits that define front edge (where individuals reside year-round) and leading edge (where individuals colonize, but may not establish) limits to its upstream distribution. Reporting on a multi-year, spatially extensive riverscape survey, our results show dramatic ebbs and flows of seasonal occupancies due to individual movement with an overall trend of upstream expansion. We revealed distinct front and leading edge invasion extents, each constrained by different ecological conditions. The front edge is largely constrained by the ability for juveniles to survive an overwinter starvation period, whereas the leading edge is associated with adult growth potential and seasonal hydrological conditions. We also found key morphological traits associated with more mobile individuals. By providing mechanistic insight into the factors that promote or limit range expansion of an invasive riverine species, our study enhances the ability to predict future range shifts and provides critical information to managers tasked with restricting further expansion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16:476–487. doi:10.1111/j.1472-4642.2010.00654.x

  2. Adams DC, Otarola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399. doi:10.1111/2041-210X.12035

  3. Barthel BL, Cooke SJ, Svec JH, Suski CD, Bunt CM, Phelan FJS, Philipp DP (2008) Divergent life histories among smallmouth bass Micropterus dolomieu inhabiting a connected river-lake system. J Fish Biol 73:829–852. doi:10.1111/j.1095-8649.2008.01972.x

  4. Beamesderfer RCP, North JA (1995) Growth, natural mortality, and predicted response to fishing for largemouth bass and smallmouth bass populations in North America. North Am J Fish Manage 15:688–704. doi:10.1577/1548-8675(1995)015<0688:GNMAPR>2.3.CO;2

  5. Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13:1210–1220. doi:10.1111/j.1461-0248.2010.01505.x

  6. Carey MP, Sanderson BL, Friesen TA, Barnas KA, Olden JD (2011) Smallmouth bass in the Pacific Northwest: A threat to native species; a benefit for anglers. Rev Fish Sci 19:305–315. doi:10.1080/10641262.2011.598584

  7. Chen IC, Hill JK, Ohlemueller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

  8. Chuang A, Peterson CR (2016) Expanding population edges: theories, traits, and trade-offs. Global Change Biol 22:494–512. doi:10.1111/gcb.13107

  9. Comte L, Grenouillet G (2013) Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36:1236–1246. doi:10.1111/j.1600-0587.2013.00282.x

  10. Cooke SJ, Phillip DP, Weatherhead PJ (2002) Parental care patterns and energetics of smallmouth bass (Micropterus dolomieu) and largemouth bass (Micropterus salmoides) monitored with activity transmitters. Can J Zool 80:756–770. doi:10.1139/Z02-048

  11. DeVries DR, Frie RV (1996) Determination of age and growth. In: Murphy BR, Willis DW (eds) Fisheries techniques, 2nd edn. American Fisheries Society, Bethesda, Maryland, pp 483–512

  12. Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi:10.1890/110137

  13. Dytham C (2009) Evolved dispersal strategies at range margins. Proc R Soc B 276:1407–1413. doi:10.1098/rspb.2008.1535

  14. Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175. doi:10.1111/j.1461-0248.2006.01007.x

  15. Hanson KC, Hasler CT, Suski CD, Cooke SJ (2007) Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment. Comp Biochem Physiol 148:913–920. doi:10.1016/j.cbpa.2007.09.013

  16. Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54. doi:10.1111/j.1469-185X.2008.00060.x

  17. Henry RC, Bocedi G, Travis JMJ (2013) Eco-evolutionary dynamics of range shifts: elastic margins and critical thresholds. J Theor Biol 321:1–7. doi:10.1016/j/jtbi/2012.12.004

  18. Hoffman BD, Courchamp F (2016) Biological invasions and natural colonisations: are they that different? NeoBiota 29:1–14. doi:10.3897/neobiota.29.6959

  19. Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108(18):27. doi:10.1111/j.0030-1299.2005.13147.x

  20. Hudina S, Hock K, Zganec K, Lucic A (2012) Changes in population characteristics and structure of the signal crayfish at the edge of its invasive range in a European river. Ann Limnol Int J Lim 48:3–11. doi:10.1051/limn/2011051

  21. Kokko H, Lopez-Sepulcre A (2006) From individual dispersal to species ranges: perspectives for a changing world. Science 313:789–791. doi:10.1126/science.1128566

  22. Kubisch A, Hovestadt T, Poethke H-J (2010) On the elasticity of range limits during periods of expansion. Ecology 91:3094–3099. doi:10.1890/09-2022.1

  23. Lawrence DJ, Beauchamp DA, Olden JD (2015) Life-stage-specific physiology defines invasion extent of a riverine fish. J Anim Ecol 84:879–888. doi:10.1111/1365-2656.12332

  24. Lawrence DJ, Olden JD, Torgersen CE (2012) Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat. Freshwater Biol 57:1929–1946. doi:10.1111/j.1365-2427.2012.02847.x

  25. Lawrence DJ, Stewart-Koster B, Olden JD, Ruesch AS, Torgersen CE, Lawler JJ, Butcher CP, Crown JK (2014) The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon. Ecol Appl 24:895–912. doi:10.1890/13-0753.1

  26. Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ (2012) Local and landscape management of an expanding range margin under climate change. J Appl Ecol 49:552–561. doi:10.1111/j/1365-2664.2011.02098.x

  27. Lenoir J, Svenning J-C (2013) Latitudinal and elevational range shifts under contemporary climate change. Encycl Biodivers 4:599–611. doi:10.1016/B978-0-12-384719-5.00375-0

  28. Lindstrom T, Brown GP, Sisson SA, Phillips BL, Shine R (2013) Rapid shifts in dispersal behavior on an expanding range edge. Proc Natl Acad Sci 110:13452–13456. doi:10.1073/pnas.1303157110

  29. Loppnow GL, Vascotto K, Venturelli PA (2013) Invasive smallmouth bass (Micropterus dolomieu): history, impacts, and control. Manag Biol Invasion 4:191–206. doi:10.3391/mbi.2013.4.3.02

  30. Lyons J, Kanehl P (2002) Seasonal movements of smallmouth bass in streams. Am Fish Soc Symp 31:149–160

  31. Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17:637–649. doi:10.1111/ele.12262

  32. Olden JD, Kennard MK, Leprieur F, Tedesco PA, Winemiller KO, Garcia-Berthou E (2010) Conservation biogeography of freshwater fishes: past progress and future directions. Divers Distrib 16:496–513. doi:10.1111/j.1472-4642.2010.00655.x

  33. Olden JD, Naiman RJ (2010) Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol 55:86–107. doi:10.1111/j.1365-2427.2009.02179.x

  34. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

  35. Radinger J, Wolter C (2014) Patterns and predictors of fish dispersal in rivers. Fish Fish 15:455–473. doi:10.1111/faf.12028

  36. Rehm EM, Olivas P, Stroud J, Feeley KJ (2015) Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol 5:4315–4326. doi:10.1002/ece3.1645

  37. Ridgway MS, Shuter BJ (1996) Effects of displacement on the seasonal movements and home range characteristics of smallmouth bass in Lake Opeongo. North Am J Fish Manage 16:371–377. doi:10.1577/1548-8675(1996)016<0371:EODOTS>2.3.CO;2

  38. Ridgway MS, Shuter BJ, Post EE (1991) The relative influence of body size and territorial behaviour on nesting asynchrony in male smallmouth bass, Micropterus dolomieui (Pisces: Centrarchidae). J Anim Ecol 60:665–681. doi:10.2307/5304

  39. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59. doi:10.2307/2992207

  40. Rohlf FJ (2006) TpsDig software. Department of Ecology and Evolution, State University of New York, Stony Brook. http://life.bio.sunysb.edu/morph/

  41. Rubenson ES, Olden JD (2016) Spatiotemporal spawning patterns of smallmouth bass at its upstream invasion edge. Trans Am Fish Soc 145:693–702. doi:10.1080/00028487.2016.1150880

  42. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings H, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471. doi:10.1016/j.tree.2007.06.009

  43. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436. doi:10.1146/annurev.ecolsys.110308.120317

  44. Shrader T, Gray ME (1999) Biology and management of John Day River smallmouth bass. Oregon Department of Fish and Wildlife, Portland, Oregon

  45. Shuter BJ, Maclean JA, Fry FEJ, Regier HA (1980) Stochastic simulation of temperature effects on first-year survival of smallmouth bass. Trans Am Fish Soc 109:1–34. doi:10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2

  46. Tabor RA, Sanders ST, Lantz DW, Celedonia MT, Damm S (2012) Seasonal movements of smallmouth bass in the Lake Washington ship canal, Washington. Northwest Sci 86:133–143. doi:10.3955/046.086.0205

  47. Todd BL, Rabeni CF (1989) Movement and habitat use by stream-dwelling smallmouth bass. Trans Am Fish Soc 118:229–242. doi:10.1577/1548-8659(1989)118<0229:MAHUBS>2.3.CO;2

  48. Torgersen CE, Price DM, Li HW, McIntosh BA (1999) Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecol Appl 9:301–319. doi:10.2307/2641187

  49. Volis S, Ormanbekova D, Shulgina I (2016) Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Mol Ecol 25:1449–1464. doi:10.1111/mec.13565

  50. Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120

  51. Westhoff JT, Paukert C, Ettinger-Dietzel S, Dodd H, Siepker M (2016) Behavioural thermoregulation and bioenergetics of riverine smallmouth bass associated with ambient cold-period thermal refuge. Ecol Freshw Fish 25:72–85. doi:10.1111/eff.12192

  52. Whitledge GW, Hayward RS, Rabeni CF (2002) Effects of temperature on specific daily metabolic demand and growth scope of sub-adult and adult smallmouth bass. J Fresh Ecol 17:353–361. doi:10.1080/02705060.2002.9663908

Download references

Acknowledgements

We thank David Lawrence for providing temperature and bass distribution data from 2009 to 2010, Lucinda Morrow from Washington Department of Fish and Wildlife for conducting age analysis on our smallmouth bass scales, Kasey Bliesner from Middle Fork John Day Intensively Monitored Watershed and Dolly Robison from US Forest Service for providing temperature data, and Michelle Louie, Chris Bare, Karl Veggerby, Emily Davis, Rebekah Stiling, Amy Edwards, Lauren Kuehne, Will Chen, Rachel Lee, Jamie Thompson, Bryan Donahue, Jared Frantzich, Hunter Simpson, Alicia Godersky, and Tim Unterwegner for field assistance. Particular appreciation goes to all the landowners of the NFJDR for access to their land and endless support throughout the years. We thank Brian Shuter, Simon Gillings, and one anonymous reviewer for providing valuable suggestions that improved the manuscript. Funding support was provided by the National Science Foundation Graduate Research Fellowship Program to ESR and the University of Washington H. Mason Keeler Endowed Professorship awarded to JDO.

Author contribution statement

ESR and JDO conceived and formulated the project questions. ESR conducted the fieldwork and data analysis. ESR and JDO wrote the manuscript.

Author information

Correspondence to Erika S. Rubenson.

Additional information

Communicated by Jessica Sanchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rubenson, E.S., Olden, J.D. Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia 184, 453–467 (2017). https://doi.org/10.1007/s00442-017-3885-5

Download citation

Keywords

  • Climate change
  • Secondary spread
  • Range dynamics
  • Connectivity
  • Morphology