Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluating local adaptation of a complex phenotype: reciprocal tests of pigmy rattlesnake venoms on treefrog prey


Theory predicts that predator–prey interactions can generate reciprocal selection pressures on species pairs, which can result in local adaptation, yet the presence and pattern of local adaptation is poorly studied in vertebrate predator–prey systems. Here, we used a reciprocal common garden (laboratory) experimental design involving comparisons between local and foreign populations to determine if local adaptation was present between a generalist predator—the pigmy rattlesnake (Sistrurus miliarius)—and a co-occurring prey—the squirrel treefrog (Hyla squirella). We conducted toxicity trials using snake venom from two populations separated by 340 km tested on prey from sympatric and allopatric populations, resulting in data from four venom origin–frog origin combinations. We assessed venom effectiveness using two measures (frog mortality at 24 h and time to frog death) and then used regression analyses to look for a signal of local adaptation with either measure. We found evidence for local adaptation for one measure (time to death), but not the other (frog mortality). We argue that in this system, the time to death of a prey item is a more ecologically relevant measure of venom effectiveness than is frog mortality at 24 h. Our results document an example of local adaptation between two interacting vertebrates using a whole-organism assay and a local versus foreign criteria and provide evidence that population-level variation in snake venom is adaptive.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Barlow A, Pook CE, Harrison RA, Wuster W (2009) Coevolution of diet and prey specific venom activity supports the role of selection in snake venom evolution. Proc R Soc B Biol Sci 276:2443–2449. doi:10.1098/rspb.2009.0048

  2. Bénard-Valle M, Carbajal-Saucedo A, de Roodt A, López-Vera E, Alagón A (2014) Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and reptile model. Toxicon 77:6–15. doi:10.1016/j.toxicon.2013.10.005

  3. Benkman CW, Holimon WC, Smith JW (2001) The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pine. Evol 55:282–294. doi:10.1111/j.0014-3820.2001.tb01293.x

  4. Bevelander G, Smith TL, Kardong KV (2006) Microhabitat and prey odor selection in the foraging pigmy rattlesnake. Herpetologica 62:47–55. doi:10.1655/04-98.1

  5. Binckley CA, Resetarits WJ Jr (2002) Reproductive decisions under threat of predation: squirrel treefrog (Hyla squirella) responses to banded sunfish (Enneacanthus obesus). Oecologia 130:157–161. doi:10.1007/s004420100781

  6. Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205. doi:10.1111/ele.12150

  7. Borkow G, Gutiérrez JM, Ovadia M (1993) Isolation and characterization of synergistic hemorrhagins from the venom of the snake Bothrops asper. Toxicon 31:1137–1150. doi:10.1016/0041-0101(93)90129-7

  8. Boughton RG, Staiger J, Franz R (2000) Use of PVC pipe refugia as a sampling technique for hylid treefrogs. Am Midl Nat 144:168–177. doi:10.1674/0003-0031(2000)144[0168:UOPPRA]2.0.CO;2

  9. Brennan RS, Hwang R, Tse M, Fangue NA, Whitehead A (2016) Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comp Biochem Phys A 196:11–19. doi:10.1016/j.cbpa.2016.02.006

  10. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

  11. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229. doi:10.1016/j.tree.2012.10.020

  12. Chippaux JP, Williams V, White J (1991) Snake venom variability: methods of study, results and interpretation. Toxicon 29(1279):1303. doi:10.1016/0041-0101(91)90116-9

  13. Chiszar D, Walters A, Urbaniak J, Smith HM, Mackessy SP (1999) Discrimination between envenomated and nonenvenomated prey by western diamondback rattlesnakes (Crotalus atrox): chemosensory consequences of venom. Copeia 1999:640–648. doi:10.2307/1447596

  14. Chu CW, Tsai TS, Tsai IH, Lin YS, Tu MC (2009) Prey envenomation does not improve digestive performance in Taiwanese pit vipers (Trimeresurus gracilis and T. stejnegeri stejnegeri). Comp Biochem Phys A 152:579–585. doi:10.1016/j.cbpa.2009.01.006

  15. Conant R, Collins JT (1998) A field guide to reptiles and amphibians: Eastern and Central North America, 3rd edn. Houghton Mifflin Harcourt, New York

  16. da Silva NJ Jr., Aird SD (2001) Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Phys C 128:425–456. doi:10.1016/S1532-0456(00)00215-5

  17. Dagda RK, Gasanov S, De La Oiii Y, Rael ED, Lieb CS (2013) Genetic basis for variation of metalloproteinase-associated biochemical activity in venom of the Mojave rattlesnake (Crotalus scutulatus scutulatus). Biochem Res Int 2013:251474. doi:10.1155/2013/251474

  18. Daltry JC, Wuster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540. doi:10.1038/379537a0

  19. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B Biol Sci 205:489–511. doi:10.1098/rspb.1979.0081

  20. D’Império Lima MR, Cristina Dos Santos M, Tamborgi DV, Marques T, Dias Da Silva W, Kipnis T (1991) Susceptibility of different strains of mice to South American rattlesnake (Crotalus durissus terrificus) venom: correlation between lethal effect and creatine kinase release. Toxicon 29:783–786. doi:10.1016/0041-0101(91)90070-8

  21. Ernst CH, Ernst EM (2011) Venomous reptiles of the United States, Canada, and northern Mexico, Volume 1: Heloderma, Micruroides, Micrurus, Pelamis, Agkistrodon, Sistrurus. The Johns Hopkins University Press, Baltimore, Maryland

  22. Farrell TM, Pilgrim MA, May PG, Blihovde WB (2011) The herpetofauna of Lake Woodruff National Wildlife Refuge, Florida. Southeast Nat 10:647–658. doi:10.1656/058.010.0405

  23. Finney DJ (1952) Probit analysis: a statistical treatment of the sigmoid response curve, 2nd edn. Cambridge University Press, London

  24. Gibbs HL, Mackessy SP (2009) Functional basis of molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes. Toxicon 53:672–679. doi:10.1016/j.toxicon.2009.01.034

  25. Gibbs HL, Rossiter W (2008) Rapid evolution by positive selection and gene gain and loss: PLA2 venom genes in closely related Sistrurus rattlesnakes with divergent diets. J Mol Evol 66:151–166. doi:10.1007/s00239-008-9067-7

  26. Golbuu Y, Gouezo M, Kurihara H, Rehm L, Wolanski E (2016) Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35:909. doi:10.1007/s00338-016-1457-5

  27. Greischar MA, Koskella B (2007) A synthesis of experimental work on parasite local adaptation. Ecol Lett 10:418–434. doi:10.1111/j.1461-0248.2007.01028.x

  28. Hanifin CT, Brodie ED Jr, Brodie ED III (2008) Phenotypic mismatches reveal escape from arms-race coevolution. PLoS Biol 6:e60. doi:10.1371/journal.pbio.0060060

  29. Hayes WK, Herbert SS, Rehling GC, Gennaro JF (2002) Factors that influence venom expenditure by viperid and other snakes during predatory and defensive contexts. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the Vipers. Eagle Mountain Publ, Eagle Mountain, pp 207–233

  30. Hereford J, Winn AA (2008) Limits to local adaptation in six populations of the annual plant Diodia teres. New Phytol 178:888–896. doi:10.1111/j.1469-8137.2008.02405.x

  31. Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290. doi:10.1086/527496

  32. Holding ML, Biardi JE, Gibbs HL (2016) Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc R Soc B Biol Sci 283:20152841. doi:10.1098/rspb.2015.2841

  33. Jansa SA, Voss RS (2011) Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS ONE 6:e20997. doi:10.1371/journal.pone.0020997

  34. Kardong KV (1986) The predatory strike of the rattlesnake: when things go amiss. Copeia 1986:816–820. doi:10.2307/1444969

  35. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

  36. Keogh CL, Sanderson ME, Byers JE (2016) Local adaptation to parasite selective pressure: comparing three congeneric co-occurring hosts. Oecologia 180:137–147. doi:10.1007/s00442-015-3461-9

  37. Lajeunesse MJ, Forbes MR (2002) Host range and local parasite adaptation. Proc R Soc B Biol Sci 269:703–710. doi:10.1098/rspb.2001.1943

  38. Laustsen AH, Gutiérrez JM, Rasmussen AR, Engmark M, Gravlund P, Sanders KL, Lohse B, Lomonte B (2015) Danger in the reef: proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis. Toxicon 107:187–196. doi:10.1016/j.toxicon.2015.07.008

  39. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010. doi:10.1371/journal.pone.0004010

  40. Lenormand T (2012) From local adaptation to speciation: specialization and reinforcement. Int J Ecol 2012:508458. doi:10.1155/2012/508458

  41. Li M, Fry BG, Kini RM (2005) Eggs-only diet: its implications for the toxin profile of the marbled sea snake (Aipysurus eydouxii). J Mol Evol 60:81–89. doi:10.1007/s00239-004-0138-0

  42. Lomonte B, Pla D, Sasa M, Tsai WC, Solórzano A, Ureña-Díaz JM, Fernández-Montes ML, Mora-Obando D, Sanz L, Gutiérrez JM, Calvete JJ (2014) Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: snake venomics, toxicity, and neutralization by antivenom. J Proteom 103:137–152. doi:10.1016/j.jprot.2014.03.034

  43. Mackessy SP (1988) Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia 1988:92–101. doi:10.2307/1445927

  44. Mackessy SP (2008) Venom composition in rattlesnakes: trends and biological significance. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP (eds) The Biology of Rattlesnakes. Loma Linda University Press, Loma Linda, pp 495–510

  45. Mackessy SP (2010) Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon 55:1463–1474. doi:10.1016/j.toxicon.2010.02.028

  46. Mackessy SP, Sixberry NM, Heyborne WH, Fritts T (2006) Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon 47:537–548. doi:10.1016/j.toxicon.2006.01.007

  47. Mathiasen P, Premoli AC (2016) Living on the edge: adaptive and plastic response of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion. Oecologia 181:607–619. doi:10.1007/s00442-016-3568-7

  48. May PG, Farrell TM (2012) Growth patterns of dusky pigmy rattlesnakes (Sistrurus miliarius barbouri) from central Florida. Herpetol Monogr 26:58–79. doi:10.1655/HERPMONOGRAPHS-D-11-00003.1

  49. May PG, Farrell TM, Heulett ST, Pilgrim MA, Bishop LA, Spence DJ, Rabatsky AM, Campbell MG, Aycrigg AD, Richardson WE II (1996) Seasonal abundance and activity of a rattlesnake (Sistrurus miliarius barbouri) in central Florida. Copeia 1996:389–401. doi:10.2307/1446855

  50. Mebs D (2001) Toxicity in animals. Trends in evolution? Toxicon 39:87–96. doi:10.1016/S0041-0101(00)00155-0

  51. Modahl CM, Mukherjee AK, Mackessy SP (2016) An analysis of venom ontogeny and prey-specific toxicity in the monocled cobra (Naja kaouthia). Toxicon 119:8–20. doi:10.1016/j.toxicon.2016.04.049

  52. Mosca E, Gugerli F, Eckert AJ, Neale DB (2016) Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genet Genomes 12:9. doi:10.1007/s11295-015-0964-9

  53. R Core Team R (2016): a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  54. Richards DP, Barlow A, Wüster W (2012) Venom lethality and diet: differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis). Toxicon 59:110–116. doi:10.1016/j.toxicon.2011.10.015

  55. Roth ED, May PG, Farrell TM (1999) Pigmy rattlesnakes use frog-derived chemical cues to select foraging sites. Copeia 1999:772–774. doi:10.2307/1447612

  56. Sasa M (1999) Diet and snake venom evolution: can local selection alone explain intraspecific venom variation? Toxicon 37:249–252. doi:10.1016/S0041-0101(00)00155-0

  57. Schemske DW (2010) Adaptation and The Origin of Species. Am Nat 176:S4–S25. doi:10.1086/657060

  58. Schiffers K, Bourne EC, Lavergne S, Thuiller W, Travis JMJ (2012) Limited evolutionary rescue of locally adapted populations facing climate change. Philos Trans R Soc B 368:20120083. doi:10.1098/rstb.2012.0083

  59. Smith KG (2005) An exploratory assessment of Cuban treefrog (Osteopilus septentrionalis) tadpoles as predators of native and nonindigenous tadpoles in Florida. Amphibia-Reptilia 26:571–575. doi:10.1163/156853805774806313

  60. St Clair JB, Howe GT (2007) Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob Change Biol 13:1441–1454. doi:10.1111/j.1365-2486.2007.01385.x

  61. Thomas RG, Pough FH (1979) The effect of rattlesnake venom on digestion of prey. Toxicon 17:221–228. doi:10.1016/0041-0101(79)90211-3

  62. Toledo LF, Ribeiro RS, Haddad CFB (2006) Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J Zool 271:170–177. doi:10.1111/j.1469-7998.2006.00195.x

  63. Torres-Bonilla KA, Schezaro-Ramos R, Floriano RS, Rodrigues-Simioni L, Bernal-Bautista MH, da Cruz-Höfling MA (2016) Biological activities of Leptodeira annulata (banded cat-eyed snake) venom on vertebrate neuromuscular preparations. Toxicon 119:345–351. doi:10.1016/j.toxicon.2016.07.004

  64. Voss RS, Jansa SA (2012) Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev 87:822–837. doi:10.1111/j.1469-185X.2012.00222.x

  65. Williams V, White J, Schwaner TD, Sparrow A (1988) Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in south Australia. Toxicon 26:1067–1075. doi:10.1016/0041-0101(88)90205-X

  66. Wooldridge BJ, Pineda G, Banuelas-Ornelas JJ, Dagda RK, Gasanov SE, Rael ED, Lieb CS (2001) Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom. Comp Biochem Phys B 130:169–179. doi:10.1016/S1096-4959(01)00422-5

  67. Wüster W, Daltry JC, Thorpe RS (1999) Can diet explain intraspecific venom variation? Reply to Sasa. Toxicon 37:253–258. doi:10.1016/S0041-0101(98)00122-6

  68. Zimmerman KD, Gates GR, Heatwole H (1990) Effects of venom of the olive sea snake, Aipysurus laevis, on the behavior and ventilation of three species of prey fish. Toxicon 28:1469–1478. doi:10.1016/0041-0101(90)90160-9

Download references


We thank Hannah VanSumeren for her assistance with lab work. S. Mackessy provided helpful advice for the development of LD50 assay protocols. We also thank numerous students, visiting researchers, and collaborators for help locating snakes in the field including C. Lind, J. Serrao, M. Pilgrim, E. Royal, D. Rokyta, M. Margres, K. Wray, M. Holding, R. Denton, and D. Salazar-Valenzuela. Our manuscript was improved, thanks to comments from G. Zancolli and one anonymous reviewer. Venoms from pigmy rattlesnakes were collected under a License to Possess or Exhibit Venomous Reptiles and/or Reptiles of Concern from the Florida Fish and Wildlife Conservation Commission with the following license renewal identifications (year): 411-75193 (2011–2012), 411-95180 (2012–2013), 411-104419 (2013–2014), and 411-115575 (2014–2015). Squirrel treefrogs were obtained under a Scientific Collecting Permit from the Florida Fish and Wildlife Conservation Commission (permit number LSSC-11-00067A).

Author information

SASW and HLG conceived the study. SASW and TMF collected organisms in the field and performed statistical analyses. SASW conducted laboratory experiments and wrote the manuscript. All authors were involved in manuscript revisions.

Correspondence to Sarah A. Smiley-Walters.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed. Research methods were approved by the Stetson University IACUC (protocol #2011TF101).


This research was made possible by financial support from The Brown Visiting Teacher-Scholar Fellows Program at Stetson University.

Additional information

We document local adaptation of a complex trait in a predator–prey interaction between two vertebrates. Our study demonstrates that population-level variation in snake venom has adaptive significance.

Communicated by Lin Schwarzkopf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smiley-Walters, S.A., Farrell, T.M. & Gibbs, H.L. Evaluating local adaptation of a complex phenotype: reciprocal tests of pigmy rattlesnake venoms on treefrog prey. Oecologia 184, 739–748 (2017). https://doi.org/10.1007/s00442-017-3882-8

Download citation


  • Predator–prey interactions
  • Fitness trade-off
  • Common garden
  • Snake venom
  • Sistrurus
  • Toxicity