, Volume 181, Issue 1, pp 77–85 | Cite as

Paradoxical acclimation responses in the thermal performance of insect immunity

  • Laura V. FergusonEmail author
  • David E. Heinrichs
  • Brent J. Sinclair
Physiological ecology - original research


Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from −0.5 ± 0.25 to −2.1 ± 0.18 °C, and chill coma recovery time after 72 h at −2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms’ response to climate change.


Cold Pathogen Thermal performance curve Biotic stressor Plasticity 



Thanks to Dr. Chris Guglielmo, for equipment access, Benjamin Arsic and Ron Flannagan for microbiological assistance, and Amanda Hu, Steven Villani, Steven Xia, and Joshua Zyss for cricket rearing. We are grateful to Caroline Williams and anonymous reviewers for comments that improved the manuscript. Supported by the Natural Sciences and Engineering Research Council of Canada via a Discovery Grant to BJS and a PGS-D scholarship to LVF; by a grant from the Canadian Foundation for Innovation to BJS; and by a grant from The Canadian Institutes of Health Research to DEH.

Author contribution statement

LVF and BJS conceived of the study and wrote the manuscript; LVF carried out the design, laboratory work and statistical analysis; DEH participated in the design of the study and drafting of the manuscript. All authors gave final approval for publication.


  1. Adamo SA (2004) Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis. J Insect Physiol 50:209–216. doi: 10.1016/j.jinsphys.2003.11.011 CrossRefPubMedGoogle Scholar
  2. Adamo SA, Jensen M, Younger M (2001) Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Anim Behav 62:417–425. doi: 10.1006/anbe.2001.1786 CrossRefGoogle Scholar
  3. Ahmed AM, Baggott SL, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377CrossRefGoogle Scholar
  4. Alexander RD (1968) Life cycle origins, speciation, and related phenomena in crickets. Q Rev Biol 43:1–41CrossRefPubMedGoogle Scholar
  5. Andersen JL et al (2015) How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol 29:55–65. doi: 10.1111/1365-2435.12310 CrossRefGoogle Scholar
  6. Angilletta MJ (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545. doi: 10.1016/j.jtherbio.2006.06.002 CrossRefGoogle Scholar
  7. Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New YorkCrossRefGoogle Scholar
  8. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753. doi: 10.1111/j.1466-8238.2007.00359.x CrossRefGoogle Scholar
  9. Ardia DR, Gantz JE, Brent C, Strebel S (2012) Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol 26:732–739. doi: 10.1111/j.1365-2435.2012.01989.x CrossRefGoogle Scholar
  10. Bresolin G, Morgan JA, Ilgen D, Scherer S, Fuchs TM (2006) Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59:503–512. doi: 10.1111/j.1365-2958.2005.04916.x CrossRefPubMedGoogle Scholar
  11. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15. doi: 10.3354/cr00879 CrossRefGoogle Scholar
  12. Coello Alvarado LE, MacMillan HA, Sinclair BJ (2015) Chill-tolerant Gryllus crickets maintain ion balance at low temperatures. J Insect Physiol 77:15–25. doi: 10.1016/j.jinsphys.2015.03.015 CrossRefPubMedGoogle Scholar
  13. Collazos ME, Ortega E, Barriga C (1994) Effect of temperature on the immune system of a cyprinid fish (Tinca tinca, L.). Blood phagocyte function at low temperatures. Fish Shellfish Immunol 4:231–238CrossRefGoogle Scholar
  14. Crawley MJ (2007) The R Book. Wiley, New YorkCrossRefGoogle Scholar
  15. Cudmore TJ, Björklund N, Carroll AL, Staffan Lindgren B (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J Appl Ecol 47:1036–1043. doi: 10.1111/j.1365-2664.2010.01848.x CrossRefGoogle Scholar
  16. Fedorka KM, Linder JE, Winterhalter W, Promislow D (2007) Post-mating disparity between potential and realized immune response in Drosophila melanogaster. Proc R Soc Lond B 274:1211–1217. doi: 10.1098/rspb.2006.0394 CrossRefGoogle Scholar
  17. Fedorka KM, Copeland EK, Winterhalter WE (2013) Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. J Exp Biol 216:4005–4010. doi: 10.1242/jeb.091538 CrossRefPubMedGoogle Scholar
  18. Fernandes EK, Rangel DE, Moraes AM, Bittencourt VR, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invert Pathol 98:69–78. doi: 10.1016/j.jip.2007.10.011 CrossRefGoogle Scholar
  19. Freitak D, Ots I, Vanatoa A, Horak P (2003) Immune response is energetically costly in white cabbage butterfly pupae. Proc R Soc Lond B 270:S220–S222. doi: 10.1098/rsbl.2003.0069 CrossRefGoogle Scholar
  20. Gershman SN (2008) Sex-specific differences in immunological costs of multiple mating in Gryllus vocalis field crickets. Behav Ecol 19:810–815. doi: 10.1093/beheco/arn040 CrossRefGoogle Scholar
  21. Gillespie JP, Kanost MR (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643CrossRefPubMedGoogle Scholar
  22. González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1–16. doi: 10.1111/j.1570-7458.2011.01187.x CrossRefGoogle Scholar
  23. Haine ER, Moret Y, Siva-Jothy MT, Rolff J (2008) Antimicrobial defense and persistent infection in insects. Science 322:1257–1259. doi: 10.1126/science.1165265 CrossRefPubMedGoogle Scholar
  24. Harrison JF, Woods HA, Roberts SP (2012) Ecological and environmental physiology of insects. Oxford University Press, OxfordCrossRefGoogle Scholar
  25. Harvell DH et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162CrossRefPubMedGoogle Scholar
  26. Hokkanen HMT (1992) Overwintering survival and spring emergence in Meligethes aeneus: effects of body weight, crowding, and soil treatment with Beauveria bassiana. Entomol Exp Appl 67:241–246CrossRefGoogle Scholar
  27. Krams I, Daukšte J, Kivleniece I, Krama T, Rantala MJ (2011) Overwinter survival depends on immune defence and body length in male Aquarius najas water striders. Entomol Exp Appl 140:45–51. doi: 10.1111/j.1570-7458.2011.01132.x CrossRefGoogle Scholar
  28. Le Bourg E, Massou I, Gobert V (2009) Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster. Biogerontology 10:613–625. doi: 10.1007/s10522-008-9206-y CrossRefPubMedGoogle Scholar
  29. Le Morvan C, Troutaud D, Deschaux P (1998) Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol 201:165–168PubMedGoogle Scholar
  30. Lenth RV (2013) lsmeans: Least-Squares means, R package version 1.06-05 ednGoogle Scholar
  31. Linderman JA, Chambers MC, Gupta AS, Schneider DS (2012) Infection-related declines in chill coma recovery and negative geotaxis in Drosophila melanogaster. PLoS ONE 7:e41907. doi: 10.1371/journal.pone.0041907 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can J Zool 75:1530–1556Google Scholar
  33. MacMillan HA, Sinclair BJ (2011) The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J Exp Biol 214:726–734. doi: 10.1242/jeb.051540 CrossRefPubMedGoogle Scholar
  34. MacMillan HA, Williams CM, Staples JF, Sinclair BJ (2012) Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci USA 109:20750–20755CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maniero GD, Carey C (1997) Changes in selected aspects of immune function in the leopard frog, Rana pipiens, associated with exposure to cold. J Comp Physiol B 167:256–263CrossRefPubMedGoogle Scholar
  36. Marnila P, Tiiska A, Lagerspetz K, Lilius E-M (1995) Phagocyte activity in the frog Rana temporaria: whole blood chemiluminescence method and the effects of temperature and thermal acclimation. Comp Biochem Physiol 111A:609–614CrossRefGoogle Scholar
  37. Marshall KE, Sinclair BJ (2011) The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J Exp Biol 214:1205–1212. doi: 10.1242/jeb.054569 CrossRefPubMedGoogle Scholar
  38. Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB (2012) Complex effects of temperature on mosquito immune function. Proc R Soc Lond B 279:3357–3366. doi: 10.1098/rspb.2012.0638 CrossRefGoogle Scholar
  39. Nakamura A et al (2011) Innate immune system still works at diapause, a physiological state of dormancy in insects. Biochem Biophys Res Commun 410:351–357. doi: 10.1016/j.bbrc.2011.06.015 CrossRefPubMedGoogle Scholar
  40. Olsen TM, Duman JG (1997) Maintenance of the superooled state in overwintering pyrochroid beetle larvae, Dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins. J Comp Physiol B 167:105–113CrossRefGoogle Scholar
  41. Olsen TM, Sass SJ, Li N, Duman JG (1998) Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). J Exp Biol 201:1585–1594PubMedGoogle Scholar
  42. Prendergast BJ, Freeman DA, Zucker I, Nelson RJ (2002) Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol 282:R1054–R1062Google Scholar
  43. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Rantala MJ, Roff DA (2005) An analysis of trade-offs in immune function, body size and development time in the Mediterranean Field Cricket, Gryllus bimaculatus. Funct Ecol 19:323–330. doi: 10.1111/j.1365-2435.2005.00979.x CrossRefGoogle Scholar
  45. Rasband WS (1997–2014) Image J, 1.45S edn. National Institutes of Health, BethesdaGoogle Scholar
  46. Riedel W, Steenberg T (1998) Adult polyphagous coleopterans overwintering in cereal boundaries: winter mortality and susceptibility to the entomopathogenic fungus Beauveria bassiana. Biocontrol 43:175–188CrossRefGoogle Scholar
  47. Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B 270:357–366. doi: 10.1098/rspb.2002.2265 CrossRefGoogle Scholar
  48. Sinclair BJ (2015) Linking energetics and overwintering in temperate insects. J Therm Biol. doi:  10.1016/j.jtherbio.2014.07.007
  49. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA (2013) Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr Comp Biol 53:545–556. doi: 10.1093/icb/ict004 CrossRefPubMedGoogle Scholar
  50. Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68CrossRefPubMedGoogle Scholar
  51. Steenberg T, Langer V, Esbjerg P (1995) Entomopathogenic fungi in predatory beetles (col.: Carabidae and Staphylinidae) from agricultural fields. Entomophaga 40:77–85CrossRefGoogle Scholar
  52. Sternberg ED, Thomas MB (2014) Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 30:115–122. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  53. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New YorkGoogle Scholar
  54. Terblanche JS, Sinclair BJ, Jaco Klok C, McFarlane ML, Chown SL (2005) The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). J Insect Physiol 51:1013–1023. doi: 10.1016/j.jinsphys.2005.04.016 CrossRefPubMedGoogle Scholar
  55. Terblanche JS, Clusella-Trullas S, Deere JA, Chown SL (2008) Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. J Insect Physiol 54:114–127. doi: 10.1016/j.jinsphys.2007.08.007 CrossRefPubMedGoogle Scholar
  56. Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544. doi: 10.1093/icb/ict086 CrossRefPubMedGoogle Scholar
  57. Torson AS, Yocum GD, Rinehart JP, Kemp WP, Bowsher JH (2015) Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. J Exp Biol. doi:  10.1242/jeb.113829
  58. Tort L, Padros F, Rotillant J, Crespo S (1998) Winter syndrome in the gilthead sea bream Sparus aurata. Fish Shellfish Immunol 8:37–47CrossRefGoogle Scholar
  59. Vilcinskas A, Matha V (1997) Effect of the entomopathogenic fungus Beauveria bassiana on the humoral immune response of Galleria mellonella larvae (Lepidoptera: Pyralidae). Eur J Entomol 94:461–472Google Scholar
  60. Webberley KM, Hurst GDD (2002) The effect of aggregative overwintering on an insect sexually transmitted parasite system. J Parasitol 88:707–712CrossRefPubMedGoogle Scholar
  61. Williams CM, Marshall KE, MacMillan HA, Dzurisin JD, Hellmann JJ, Sinclair BJ (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS ONE 7:e34470. doi: 10.1371/journal.pone.0034470 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Williams CM, Henry HA, Sinclair BJ (2015) Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev. doi: 10.1111/brv.12105 PubMedGoogle Scholar
  63. Xu J, James RR (2012) Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee, Megachile rotundata. Insect Mol Biol 21:269–280. doi: 10.1111/j.1365-2583.2012.01133.x CrossRefPubMedGoogle Scholar
  64. Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ (2011) Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J Exp Biol 214:4021–4029. doi: 10.1242/jeb.059535 CrossRefPubMedGoogle Scholar
  65. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Laura V. Ferguson
    • 1
    Email author
  • David E. Heinrichs
    • 2
  • Brent J. Sinclair
    • 1
  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.Department of Microbiology and ImmunologyUniversity of Western OntarioLondonCanada

Personalised recommendations