Advertisement

Oecologia

, Volume 181, Issue 2, pp 413–422 | Cite as

Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird

  • Bradley K. WoodworthEmail author
  • Amy E. M. Newman
  • Sheela P. Turbek
  • Bryant C. Dossman
  • Keith A. Hobson
  • Leonard I. Wassenaar
  • Greg W. Mitchell
  • Nathaniel T. Wheelwright
  • D. Ryan Norris
Population ecology – original research

Abstract

Patterns of connectivity between breeding and wintering grounds can have important implications for individual fitness and population dynamics. Using light-level geolocators and stable hydrogen isotopes (δ2H) in feathers, we evaluated differential migration of Savannah sparrows (Passerculus sandwichensis) breeding on Kent Island in the Bay of Fundy, New Brunswick, Canada in relation to sex, age, and body size. Based on geolocators recovered from 38 individuals between 2012 and 2014, the winter distribution was centered in North Carolina (median latitude 34°, range 26°–41°), with males overwintering, on average, approximately 275 km further north than females. Based on analyses of tail feather samples collected from 106 individuals from the same population between 2008 and 2012, males and adults had more negative δ2H values than females and juveniles, respectively, providing additional evidence that males wintered north of females and that adults wintered north of juveniles. Winter latitude and δ2H values within each sex were not found to be related to body size. From geolocator data, males returned to the breeding grounds, on average, 14 days earlier than females. For males, there was some evidence that arrival date on the breeding grounds was negatively correlated with winter latitude and that individuals which arrived earlier tended to breed earlier. Thus, benefits for males of early arrival on the breeding grounds may have contributed to their wintering farther north than females. Social dominance may also have contributed to age and sex differences in winter latitude, whereby dominant males and adults forced subordinate females and juveniles further south.

Keywords

Carryover effects Light-level geolocator Protandry Savannah sparrow Stable isotopes 

Notes

Acknowledgments

We thank Jesse Pakkala, Katherine Smith, Graham Sorenson, and Elizabeth Christiansen for assistance with fieldwork, as well as Damon and Janet Gannon, Mark Murray, and Russell Ingalls for logistical support at the Bowdoin Scientific Station on Kent Island. This represents Bowdoin Scientific Station contribution no. 255.

Author contribution statement

BKW, AEMN, SPT, BCD, NTW, and DRN conceived and designed the study. BKW, AEMN, SPT, BCD, GWM, NTW, and DRN conducted fieldwork. SPT and BCD prepared feathers for stable isotope analysis. KAH and LIW conducted stable isotope analyses. BKW conducted statistical analyses and wrote the manuscript; all authors provided editorial advice.

Funding

This study was funded by the Natural Sciences and Engineering Research Council (DRN), Canada Foundation for Innovation (DRN), University of Guelph (DRN, BKW), a Bowdoin Scientific Station Summer Fellowship (BCD, SPT), the Bowdoin College Roberts Fund (BCD), and a Bowdoin College Grua/O’Connell Research Award (SPT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and national guidelines for the care and use of animals were followed.

Supplementary material

442_2015_3527_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Aebischer A, Perrin N, Krieg M, Studer J, Meyer DR (1996) The role of territory choice, mate choice and arrival date on breeding success in the Savi’s warbler Locustella luscinioides. J Avian Biol 27:143–152. doi: 10.2307/3677143 CrossRefGoogle Scholar
  2. Bensch S, Hasselquist D (1991) Territory infidelity in the polygynous great reed warbler Acrocephalus arundinaceus: the effect of variation in territory attractiveness. J Anim Ecol 60:857–871. doi: 10.2307/5418 CrossRefGoogle Scholar
  3. Betini GS, Fitzpatrick MJ, Norris DR (2015) Experimental evidence for the effect of habitat loss on the dynamics of migratory networks. Ecol Lett. doi: 10.1111/ele.12432 PubMedGoogle Scholar
  4. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348. doi: 10.1007/s00442-004-1813-y CrossRefPubMedGoogle Scholar
  5. Boyle WA, Guglielmo CG, Hobson KA, Norris DR (2011) Lekking birds in a tropical forest forego sex for migration. Biol Lett 7:661–663. doi: 10.1098/rsbl.2011.0115 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  7. Calvert AM, Walde SJ, Taylor PD (2009) Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv Ecol 4:5Google Scholar
  8. Catry P, Campos A, Almada V, Cresswell W (2004) Winter segregation of migrant European robins Erithacus rubecula in relation to sex, age and size. J Avian Biol 35:204–209. doi: 10.1111/j.0908-8857.2004.03266.x CrossRefGoogle Scholar
  9. Dale CA, Leonard ML (2011) Reproductive consequences of migration decisions by Ipswich sparrows (Passerculus sandwichensis princeps). Can J Zool 89:100–108. doi: 10.1139/Z10-098 CrossRefGoogle Scholar
  10. Dolbeer RA (1982) Migration patterns for age and sex classes of blackbirds and starlings. J Field Ornithol 53:28–46Google Scholar
  11. Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar Res Spec Issue 58:210–226Google Scholar
  12. Francis CM, Cooke F (1986) Differential timing of spring migration in wood warblers (Parulinae). Auk 103:548–556Google Scholar
  13. Francis CM, Cooke CF (1990) Differential timing of spring migration in rose-breasted grosbeaks. J Field Ornithol 61:404–412Google Scholar
  14. Gauthreaux SA Jr (1978) The ecological significance of behavioral dominance. In: Bateson PPG, Klopfer PH (eds) Perspectives in ethology. Springer Verlag, Berlin Heidelberg New York, pp 17–54Google Scholar
  15. Gow EA, Wiebe KL (2014) Males migrate farther than females in a differential migrant: an examination of the fasting endurance hypothesis. R Soc Open Sci 1:140346. doi: 10.1098/rsos.140346 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals: carry-over effects in animal populations. J Anim Ecol 80:4–18. doi: 10.1111/j.1365-2656.2010.01740.x CrossRefPubMedGoogle Scholar
  17. Hill RD, Braun MJ (2001) Geolocation by light level. In: Sibert JR, Nielsen JL (eds) Reviews: methods and technologies in fish biology and fisheries, vol 1. Springer SBM, Dordrecht, pp 315–330Google Scholar
  18. Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148. doi: 10.1007/s004420050068 CrossRefGoogle Scholar
  19. Holberton RL, Able KP (2000) Differential migration and an endocrine response to stress in wintering dark-eyed juncos (Junco hyemalis). Proc R Soc B Biol Sci 267:1889–1896. doi: 10.1098/rspb.2000.1226 CrossRefGoogle Scholar
  20. Ketterson ED, Nolan V Jr (1976) Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57:679–693. doi: 10.2307/1936182 CrossRefGoogle Scholar
  21. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo K-M, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184. doi: 10.1111/1365-2656.12135 CrossRefPubMedGoogle Scholar
  22. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950. doi: 10.1046/j.1365-2656.1999.00343.x CrossRefGoogle Scholar
  23. Lack D (1954) The natural regulation of animal numbers. Oxford University Press, LondonGoogle Scholar
  24. Langin KM, Reudink MW, Marra PP, Norris DR, Kyser TK, Ratcliffe LM (2007) Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment. Oecologia 152:449–457. doi: 10.1007/s00442-007-0669-3 CrossRefPubMedGoogle Scholar
  25. Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059. doi: 10.1111/j.2041-210X.2012.00248.x CrossRefGoogle Scholar
  26. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors—accuracy of geolocation by light. Methods Ecol Evol 3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x CrossRefGoogle Scholar
  27. Lok T, Overdijk O, Piersma T (2015) The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett 11:20140944. doi: 10.1098/rsbl.2014.0944 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American redstarts Setophaga ruticilla. J Avian Biol 27:164–170Google Scholar
  29. Marra PP (2000) The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav Ecol 11:299–308. doi: 10.1093/beheco/11.3.299 CrossRefGoogle Scholar
  30. Marra PP, Norris DR, Haig SM, Webster M, Royle JA (2006) Migratory connectivity. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, New York, pp 157–183CrossRefGoogle Scholar
  31. Mazerolle DF, Hobson KA (2007) Patterns of differential migration in white-throated sparrows evaluated with isotopic measurements of feathers. Can J Zool 85:413–420. doi: 10.1139/Z07-010 CrossRefGoogle Scholar
  32. Mitchell GW, Newman AEM, Wikelski M, Norris DR (2012) Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol 81:1024–1033. doi: 10.1111/j.1365-2656.2012.01978.x CrossRefPubMedGoogle Scholar
  33. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673. doi: 10.1046/j.1461-0248.2001.00265.x CrossRefGoogle Scholar
  34. Morbey YE, Coppack T, Pulido F (2012) Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J Ornithol 153:207–215. doi: 10.1007/s10336-012-0854-y CrossRefGoogle Scholar
  35. Myers JP (1981) A test of three hypotheses for latitudinal segregation of the sexes in wintering birds. Can J Zool 59:1527–1534. doi: 10.1139/z81-207 CrossRefGoogle Scholar
  36. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605. doi: 10.1111/j.1469-185X.2007.00027.x CrossRefPubMedGoogle Scholar
  37. Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B Biol Sci 271:59–64. doi: 10.1098/rspb.2003.2569 CrossRefGoogle Scholar
  38. Pasinelli G, Schaub M, Häfliger G, Frey M, Jakober H, Müller M, Stauber W, Tryjanowski P, Zollinger J-L, Jenni L (2011) Impact of density and environmental factors on population fluctuations in a migratory passerine. J Anim Ecol 80:225–234. doi: 10.1111/j.1365-2656.2010.01754.x CrossRefPubMedGoogle Scholar
  39. Pyle P (1997) Identification guide to North American birds. Slate Creek Press, BolinasGoogle Scholar
  40. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Rising JD (1988) Geographic variation in sex ratios and body size in wintering flocks of Savannah sparrows (Passerculus sandwichensis). Wilson Bull 100:183–203Google Scholar
  42. Rohwer S, Butler LK, Froehlich DR (2005) Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The John Hopkins University Press, Baltimore, pp 87–105Google Scholar
  43. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042. doi: 10.1126/science.288.5473.2040 CrossRefPubMedGoogle Scholar
  44. Smith RJ, Moore FR (2004) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239. doi: 10.1007/s00265-004-0855-9 CrossRefGoogle Scholar
  45. Studds CE, McFarland KP, Aubry Y, Rimmer CC, Hobson KA, Marra PP, Wassenaar LI (2012) Stable-hydrogen isotope measures of natal dispersal reflect observed population declines in a threatened migratory songbird. Divers Distrib 18:919–930. doi: 10.1111/j.1472-4642.2012.00931.x CrossRefGoogle Scholar
  46. Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896. doi: 10.1126/science.1166664 CrossRefPubMedGoogle Scholar
  47. Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3:280–283. doi: 10.1098/rsbl.2007.0053 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Taylor CM, Norris DR (2010) Population dynamics in migratory networks. Theor Ecol 3:65–73. doi: 10.1007/s12080-009-0054-4 CrossRefGoogle Scholar
  49. van Dijk JGB, Meissner W, Klaassen M (2014) Improving provenance studies in migratory birds when using feather hydrogen stable isotopes. J Avian Biol 45:103–108. doi: 10.1111/j.1600-048X.2013.00232.x CrossRefGoogle Scholar
  50. Velmala W, Helle S, Ahola MP, Klaassen M, Lehikoinen E, Rainio K, Sirkiä PM, Laaksonen T (2015) Natural selection for earlier male arrival to breeding grounds through direct and indirect effects in a migratory songbird. Ecol Evol 5:1205–1213. doi: 10.1002/ece3.1423 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217. doi: 10.1080/1025601031000096781 CrossRefPubMedGoogle Scholar
  52. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83. doi: 10.1016/S0169-5347(01)02380-1 CrossRefGoogle Scholar
  53. Wheelwright NT, Mauck RA (1998) Philopatry, natal dispersal, and inbreeding avoidance in an island population of Savannah sparrows. Ecology 79:755–767CrossRefGoogle Scholar
  54. Wheelwright NT, Rising JD (2008) Savannah sparrow—birds of North America. Available at: http://bna.birds.cornell.edu/bna/species/045/articles/introduction. Accessed 26 Mar 2014
  55. Wheelwright NT, Schultz CB, Hodum PJ (1992) Polygyny and male parental care in Savannah sparrows: effects on female fitness. Behav Ecol Sociobiol 31:279–289. doi: 10.1007/BF00171683 CrossRefGoogle Scholar
  56. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Avian metabolism: costs of migration in free-flying songbirds. Nature 423:704. doi: 10.1038/423704a CrossRefPubMedGoogle Scholar
  57. Williams H, Levin II, Norris DR, Newman AEM, Wheelwright NT (2013) Three decades of cultural evolution in Savannah sparrow songs. Anim Behav 85:213–223. doi: 10.1016/j.anbehav.2012.10.028 CrossRefGoogle Scholar
  58. Willoughby EJ (1986) An unusual sequence of molts and plumages in Cassin’s and Bachman’s sparrows. Condor 88:461–472. doi: 10.2307/1368272 CrossRefGoogle Scholar
  59. Wilson S, LaDeau SL, Tøttrup AP, Marra PP (2011) Range-wide effects of breeding-and nonbreeding-season climate on the abundance of a neotropical migrant songbird. Ecology 92:1789–1798. doi: 10.1890/10-1757.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bradley K. Woodworth
    • 1
    Email author
  • Amy E. M. Newman
    • 1
  • Sheela P. Turbek
    • 2
  • Bryant C. Dossman
    • 3
  • Keith A. Hobson
    • 4
  • Leonard I. Wassenaar
    • 4
    • 5
  • Greg W. Mitchell
    • 1
    • 6
  • Nathaniel T. Wheelwright
    • 2
  • D. Ryan Norris
    • 1
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of BiologyBowdoin CollegeBrunswickUSA
  3. 3.School of Environment and Natural ResourcesOhio State UniversityColumbusUSA
  4. 4.Environment CanadaSaskatoonCanada
  5. 5.International Atomic Energy AgencyViennaAustria
  6. 6.Wildlife Research Division, National Wildlife Research CentreEnvironment CanadaOttawaCanada

Personalised recommendations