Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production


Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPPwoody) in natural lowland forests, rubber agroforests under natural tree cover (“jungle rubber”), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPPwoody increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Adachi M, Ito A, Ishida A, Kadir WR, Ladpala P, Yamagata Y (2011) Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements. Biogeosciences 8:2635–2647. doi:10.5194/bg-8-2635-2011

  2. Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

  3. Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 10:7

  4. Asari N, Suratman MN, Jaafar J, Khalid MM (2013) Estimation of aboveground biomass for oil palm plantations using allometric equations. In: 4th International Conference on Biology, Environment and Chemistry, vol 58. IPCBEE, Singapore

  5. Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol Monogr 82:189–203

  6. Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. For Ecol Manage 247:91–97. doi:10.1016/j.foreco.2007.04.017

  7. Baudron F, Giller KE (2014) Agriculture and nature: trouble and strife? Biol Conserv 170:232–245. doi:10.1016/j.biocon.2013.12.009

  8. Berry NJ, Phillips OL, Lewis SL, Hill JK, Edwards DP, Tawatao NB, Ahmad N et al (2010) The high value of logged tropical forests: lessons from northern Borneo. Biodivers Conserv 19:985–997. doi:10.1007/s10531-010-9779-z

  9. Bonan G (2008) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge

  10. Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39. doi:10.1111/j.1744-7429.2002.tb00239.x

  11. Boyce CK, Lee J-E, Feild TS, Brodribb TJ, Zwieniecki MA (2010) Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Ann Mo Bot Gard 97:527–540

  12. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B Biol Sci 363:1839–1848. doi:10.1098/rstb.2007.0031

  13. Brasell H, Unwin G, Stocker G (1980) The quantity, temporal distribution and mineral-element content of litterfall in two forest types at two sites in tropical Australia. J Ecol 68:123–139

  14. Carr M (2011) The water relations and irrigation requirements of oil palm (Elaeis guineensis): a review. Exp Agric 47:629–652

  15. Cavelier J, Wright SJ, Santamaria J (1999) Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211:207–213. doi:10.1023/a:1004686204235

  16. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x

  17. Chave J, Navarrete D, Almeida S, Alvarez E, Aragao LEOC, Bonal D, Chatelet P et al (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55. doi:10.5194/bg-7-43-2010

  18. Chen J-W, Zhang Q, Li X-S, Cao K-F (2010) Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery. Tree Physiol 30:876–885

  19. Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa-Rican tropical rain-forest. J Ecol 82:865–872. doi:10.2307/2261450

  20. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001a) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

  21. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001b) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384. doi:10.2307/3060895

  22. Corley RHV, Tinker P (2003) The oil palm. Blackwell Science, Oxford

  23. Dent DH, Bagchi R, Robinson D, Majalap-Lee N, Burslem DF (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215

  24. Devakumar A, Prakash PG, Sathik M, Jacob J (1999) Drought alters the canopy architecture and micro-climate of Hevea brasiliensis trees. Trees 13:161–167

  25. Doughty CE, Goulden ML (2008) Seasonal patterns of tropical forest leaf area index and CO2 exchange. J Geophys Res Biogeosci 113:G00B06. doi:10.1029/2007JG000590

  26. Elliott S, Baker PJ, Borchert R (2006) Leaf flushing during the dry season: the paradox of Asian monsoon forests. Glob Ecol Biogeogr 15:248–257

  27. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

  28. Fairley R, Alexander I (1985) Methods of calculating fine root production in forests. In: Fitter AH, Atkinson D, Read DJ (eds) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 37–42

  29. FAO (United Nations Food and Agriculture Organization) (2015) FAOSTAT online statistical service. FAO, Rome.

  30. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manage 90:59–87. doi:10.1016/s0378-1127(96)03840-6

  31. Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change 3:811–815. doi:10.1038/nclimate1907

  32. Guan K, Wolf A, Medvigy D, Caylor KK, Pan M, Wood EF (2013) Seasonal coupling of canopy structure and function in African tropical forests and its environmental controls. Ecosphere 4: doi:10.1890/es12-00232.1

  33. Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Durcik M, Vogler JB, Nullet MA (2010) Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3:306–314

  34. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

  35. Haase R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Manage 117:129–147

  36. Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

  37. Harteveld M, Hertel D, Wiens M, Leuschner C (2007) Spatial and temporal variability of fine root abundance and growth in tropical moist forests and agroforestry systems (Sulawesi, Indonesia). Ecotropica 13:111–120

  38. Hedin LO, Brookshire EJ, Menge DN, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–63

  39. Herberich E, Sikorski J, Hothorn T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced Designs. PloS ONE 5: doi:10.1371/journal.pone.0009788

  40. Herrera R, Merida T, Stark N, Jordan C (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–209

  41. Hertel D (1999) Das Feinwurzelsystem von Rein- und Mischbeständen der Rotbuche: Struktur, Dynamik und interspezifische Konkurrenz. In: Dissertationes Botanicae 317, vol 317. Dissertation, Universität Kassel, Stuttgart, Gebrüder Borntraeger, Berlin

  42. Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus–Quercus mixed forest. Plant Soil 239:237–251. doi:10.1023/a:1015030320845

  43. Hertel D, Harteveld MA, Leuschner C (2009a) Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil. Soil Biol Biochem 41:481–490. doi:10.1016/j.soilbio.2008.11.020

  44. Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, Leuschner C (2009b) Below- and above-ground biomass and net primary production in a Paleotropical natural forest (Sulawesi, Indonesia) as compared to Neotropical forests. For Ecol Manage 258:1904–1912. doi:10.1016/j.foreco.2009.07.019

  45. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW et al (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

  46. Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? Am Nat 117:167–180

  47. Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

  48. Kho LK, Malhi Y, Tan SKS (2013) Annual budget and seasonal variation of aboveground and belowground net primary productivity in a lowland dipterocarp forest in Borneo. J Geophys Res Biogeosci 118:1282–1296. doi:10.1002/jgrg.20109

  49. Kim Y, Knox RG, Longo M, Medvigy D, Hutyra LR, Pyle EH, Wofsy SC et al (2012) Seasonal carbon dynamics and water fluxes in an Amazon rainforest. Glob Change Biol 18:1322–1334. doi:10.1111/j.1365-2486.2011.02629.x

  50. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450. doi:10.2307/2404783

  51. Koh LP, Wilcove DS (2007) Cashing in palm oil for conservation. Nature 448:993–994. doi:10.1038/448993a

  52. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64. doi:10.1111/j.1755-263X.2008.00011.x

  53. Kotowska MM, Leuschner C, Triadiati T, Selis M, Hertel D (2015) Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Change Biol 21:3620–3634. doi:10.1111/gcb.12979

  54. Kumagai TO, Ichie T, Yoshimura M, Yamashita M, Kenzo T, Saitoh TM, Ohashi M et al (2006) Modeling CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. J Geophys Res Atmos 111:D10107

  55. Kummerow J, Castillanos J, Maas M, Larigauderie A (1990) Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest. Vegetatio 90:73–80

  56. Laumonier Y (1997) The vegetation and physiography of Sumatra. Kluwer, Dordrecht

  57. Lawrence D (2005) Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica 37:561–570. doi:10.1111/j.1744-7429.2005.00073.x

  58. Legros S, Mialet-Serra I, Caliman J-P, Siregar F, Clement-Vidal A, Fabre D, Dingkuhn M (2009) Phenology, growth and physiological adjustments of oil palm (Elaeis guineensis) to sink limitation induced by fruit pruning. Ann Bot 104:1183–1194

  59. Leuschner C, Hertel D, Coners H, Buttner V (2001) Root competition between beech and oak: a hypothesis. Oecologia 126:276–284. doi:10.1007/s004420000507

  60. Leuschner C, Moser G, Hertel D, Erasmi S, Leitner D, Culmsee H, Schuldt B et al (2013) Conversion of tropical moist forest into cacao agroforest: consequences for carbon pools and annual C sequestration. Agrofor Syst 87:1173–1187. doi:10.1007/s10457-013-9628-7

  61. Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Sci 349:827–832

  62. Lisanework N, Michelsen A (1994) Litterfall and nutrient release by decomposition in 3 plantations compared with a natural forest in the Ethiopian Highland. For Ecol Manage 65:149–164. doi:10.1016/0378-1127(94)90166-x

  63. Lodge D, McDowell W, McSwiney C (1994) The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–387

  64. Luskin MS, Potts MD (2011) Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl Ecol 12:540–551

  65. Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc Lond Ser B Biol Sci 359:311–329. doi:10.1098/rstb.2003.1433

  66. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P et al (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12:1107–1138. doi:10.1111/j.1365-2486.2006.01120.x

  67. Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc B Biol Sci 366:3225–3245. doi:10.1098/rstb.2011.0062

  68. Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000–2012. Nat Clim Change 4:730–735

  69. Martius C, Hofer H, Garcia MVB, Rombke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154. doi:10.1023/b:fres.0000017468.76807.50

  70. McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

  71. McGrath DA, Comerford NB, Duryea ML (2000) Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. For Ecol Manage 131:167–181

  72. Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C (2014) Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Glob Change Biol 20:1481-1497. doi:10.1111/j.1365-2486.2010.02367.x

  73. Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K et al (2007) Large seasonal swings in leaf area of Amazon rainforests. Proc Natl Acad Sci 104:4820–4823

  74. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

  75. Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems 10:503–518

  76. Parsons S, Valdez-Ramirez V, Congdon R, Williams S (2014) Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences 11:5047–5056

  77. Persson H (1979) Fine-root production, mortality and decomposition in forest ecosystems. Vegetatio 41:101–109

  78. Poorter L, McDonald I, Alarcon A, Fichtler E, Licona J-C, Pena-Claros M, Sterck F et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492. doi:10.1111/j.1469-8137.2009.03092.x

  79. Posada JM, Schuur EA (2011) Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165:783–795

  80. Proctor J, Anderson JM, Chai P, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. J Ecol 71:237–260. doi:10.2307/2259975

  81. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  82. Ranasinghe MS, Milburn JA (1995) Xylem conduction and cavitation in Hevea brasiliensis. J Exp Bot 46:1693–1700

  83. Rao PS, Saraswathyamma C, Sethuraj M (1998) Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agric For Meteorol 90:235–245

  84. Rees A (1961) Midday closure of stomata in the oil palm Elaeis guineensis Jacq. J Exp Bot 12:129–146

  85. Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, de Camargo PB et al (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol Appl 14:S55–S71. doi:10.1890/02-6006

  86. Richardson SJ, Allen RB, Buxton RP, Easdale TA, Hurst JM, Morse CW, Smissen RD et al (2013) Intraspecific relationships among wood density, leaf structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS ONE 8: doi:10.1371/journal.pone.0058878

  87. Röderstein M, Hertel D, Leuschner C (2005) Above-and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21:483–492

  88. Rowland L, Hill TC, Stahl C, Siebicke L, Burban B, Zaragoza-Castells J, Ponton S et al (2014a) Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Glob Change Biol 20:979–991. doi:10.1111/gcb.12375

  89. Rowland L, Malhi Y, Silva-Espejo JE, Farfan-Amezquita F, Halladay K, Doughty CE, Meir P et al (2014b) The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia 174:295–306. doi:10.1007/s00442-013-2766-9

  90. Roy S, Singh J (1995) Seasonal and spatial dynamics of plant-available N and P pools and N-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biol Biochem 27:33–40

  91. Saner P, Loh YY, Ong RC, Hector A (2012) Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS ONE 7: doi:10.1371/journal.pone.0029642

  92. Sanford RL, Cuevas E (1996) Root growth and rhizosphere interactions in tropical forests. In: Tropical forest plant ecophysiology. Springer, Berlin, pp 268–300

  93. Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–1062. doi:10.1111/j.1365-2745.2010.01680.x

  94. Scherer-Lorenzen M, Bonilla JL, Potvin C (2007) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124. doi:10.1111/j.2007.0030-1299.16065.x

  95. Schuur EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–1170

  96. Schuur EA, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

  97. Singh K, Singh R (1981) Seasonal variation in biomass and energy of small roots in tropical dry deciduous forest, Varanasi, India. Oikos 37:88–92

  98. Sist P, Mazzei L, Blanc L, Rutishauser E (2014) Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For Ecol Manage 318:103–109. doi:10.1016/j.foreco.2014.01.005

  99. Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L et al (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–1271. doi:10.1111/geb.12092

  100. Smith K, Gholz HL, de Assis Oliveira F (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. For Ecol Manage 109:209–220. doi:10.1016/S0378-1127(98)00247-3

  101. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660. doi:10.1016/j.tree.2004.09.006

  102. Spracklen D, Arnold S, Taylor C (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nat 489:282-285. doi:10.1038/nature11390

  103. Sun C, Cao H, Shao H, Lei X, Xiao Y (2011) Growth and physiological responses to water and nutrient stress in oil palm. Afr J Biotechnol 10:10465–10471

  104. Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. For Ecol Manage 123:231–244. doi:10.1016/s0378-1127(99)00062-6

  105. Tang J-W, Cao M, Zhang J-H, Li M-H (2010) Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant Soil 335:271–288. doi:10.1007/s11104-010-0414-2

  106. Tanner E, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

  107. Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534. doi:10.1046/j.1365-2664.2003.00820.x

  108. Tian HQ, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK, Moore B, Vorosmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667. doi:10.1038/25328

  109. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi:10.1126/science.1057544

  110. Triadiati T, Tjitrosemito S, Guhardja E, Sudarsono S, Qayim I, Leuschner C (2007) Nitrogen resorption and nitrogen use efficiency in cacao agroforestry systems managed differently in Central Sulawesi. HAYATI J Biosci 14:127

  111. van Praag HJ, Sougnezremy S, Weissen F, Carletti G (1988) Root turnover in a beech and a spruce stand of the Belgian Ardennes. Plant Soil 105:87–103

  112. van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests—adaptive significance and consequences for primary consumers. Annu Rev Ecol Syst 24:353–377. doi:10.1146/

  113. Vasconcelos SS, Zarin DJ, Araújo MM, Rangel-Vasconcelos LGT, de Carvalho CJR, Staudhammer CL, Oliveira FdA (2008) Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. J Trop Ecol 24:27–38

  114. Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572. doi:10.1086/283931

  115. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi:10.2307/1939481

  116. Vitousek PM, Sanford R (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

  117. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, Ohara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219. doi:10.1007/BF00017088

  118. Vogt K, Vogt D, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89. doi:10.1023/a:1004313515294

  119. Wahid MB, Abdullah SNA, Henson I (2005) Oil palm-achievements and potential. Plant Prod Sci 8:288-297

  120. Wauters JB, Coudert S, Grallien E, Jonard M, Ponette Q (2008) Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For Ecol Manage 255:2347–2361. doi:10.1016/j.foreco.2007.12.038

  121. Wieder RK, Wright SJ (1995) Tropical forest litter dynamics and dry season irrigation on Barro-Colorado Island, Panama. Ecology 76:1971–1979. doi:10.2307/1940727

  122. Wood TE, Lawrence D, Clark DA (2005) Variation in leaf litter nutrients of a Costa Rican rain forest is related to precipitation. Biogeochemistry 73:417–437

  123. Wright SJ, Cornejo FH (1990) Seasonal drought and leaf fall in a tropical forest. Ecology 71:1165–1175. doi:10.2307/1937384

  124. Wycherley PR (1992) The genus Hevea—botanical aspects. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier, Amsterdam, pp 200–238

  125. Yang Y-S, Chen G-S, Lin P, Xie J-S, Guo J-F (2004) Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Ann For Sci 61:617–627

  126. Yavitt JB, Wright SJ (2001) Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica 33:421–434. doi:10.1111/j.1744-7429.2001.tb00196.x

  127. Yavitt JB, Wright SJ, Wieder RK (2004) Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecol 29:177–188. doi:10.1111/j.1442-9993.2004.01334.x

  128. Yeang HY (2007) Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol 175:283–289

  129. Yuan Z, Chen HY (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542. doi:10.1111/j.1466-8238.2009.00474.x

  130. Yuan Z, Chen HY (2013) Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach. Acta Oecol 48:54–61. doi:10.1016/j.actao.2013.01.009

  131. Yuen JQ, Ziegler AD, Webb EL, Ryan CM (2013) Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia. For Ecol Manage 310:915–926. doi:10.1016/j.foreco.2013.09.042

  132. Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247

  133. Zheng Z, Shanmughavel P, Sha L, Cao M, Warren M (2006) Litter decomposition and nutrient release in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Biotropica 38:342–347. doi:10.1111/j.1744-7429.2006.00151.x

  134. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin Heidelberg New York

Download references


This study was financed by the Deutsche Forschungsgemeinschaft in the framework of the collaborative German—Indonesian research project CRC990 Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia). We thank village leaders, local plot owners, PT REKI and Bukit Duabelas National Park for granting us access to and use of their properties as well as counterparts and local assistants for support. We also thank Ana Meijide for proving precipitation data and Kara Allen and Syahrul Kurniawan for proving soil data on the study region. This study was conducted using samples collected with collection Permit No. 2704/IPH.1/KS.02/X1/2012 and Export Permit No. 49/KKH-5/TRP/2014 recommended by the Indonesian Institute of Sciences and issued by the Ministry of Forestry.

Author contribution statement

M. M. K., C. L. and D. H. conceived and designed the experiments. M. M. K. performed the fieldwork and data analysis. M. M. K., C. L. and D. H. wrote the manuscript. T. T. provided editorial advice and supported local administrative issues and sample export.

Author information

Correspondence to Martyna M. Kotowska.

Additional information

Communicated by Mercedes Bustamante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (PDF 134 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotowska, M.M., Leuschner, C., Triadiati, T. et al. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia 180, 601–618 (2016).

Download citation


  • Land-use change
  • Leaf litter
  • Oil palm plantation
  • Rubber plantation
  • Nutrient cycling
  • Stem growth
  • Root litter