Advertisement

Oecologia

, Volume 175, Issue 2, pp 737–746 | Cite as

Pyrosequencing of prey DNA in faeces of carnivorous land snails to facilitate ecological restoration and relocation programmes

  • Benjamin R. WaterhouseEmail author
  • Stéphane Boyer
  • Steve D. Wratten
Conservation ecology - Original research

Abstract

Identifying and understanding predator diets is of high importance in biological conservation. This is particularly true for the introduction, establishment and maintenance of predator populations in newly created or modified ecological communities, such as translocation sites or restored habitats. Conservation status of predators may not permit captive feeding trials or intrusive gut-content methods, so non-intrusive diet assessment is required, such as faecal analysis. However, prey such as earthworms leave no morphological clues suitable for accurately discriminating between species consumed through visual faecal analysis. This study uses non-intrusive molecular methods on earthworm DNA extracted from the faeces of the carnivorous land snail Powelliphanta patrickensis to identify its earthworm diet and any seasonal trends. Data from 454-pyrosequencing revealed earthworm DNA in all samples (n = 60). Sequences were compared to a DNA library created from published and unpublished studies of New Zealand’s endemic earthworms and online databases. Unidentified earthworm sequences were clustered into molecular operational taxonomic units (MOTUs). Twenty-six MOTUs were identified, 17 of which matched the library, whereas nine did not. Similarity indices indicate that there were seasonal differences (P < 0.05) in the earthworm communities represented in the summer and the winter diets. This study highlights the importance of utilising the vast body of data generated by pyrosequencing to investigate potential temporal diet shifts in protected species. The method described here is widely applicable to a wide range of predatory species of conservation interest and can further inform habitat restoration and relocation programmes to optimize the long-term survival of the target species.

Keywords

DNA Molecular diet analysis Molluscs Earthworms Next-generation sequencing Metagenomics 

Notes

Acknowledgments

This study was financially supported by The Bio-Protection Research Centre, New Zealand, the Miss E. L. Hellaby Indigenous Grassland Trust, and Solid Energy New Zealand. We thank Paul Weber for advice and MBC Consulting, in particular Mark Hamilton, for mine site access and sampling support. Finally, thanks to the anonymous reviewers whose comments and feedback led to a substantially improved manuscript.

References

  1. Abdul-Kareem AW, McRae SG (1984) The effects on topsoil of long-term storage in stockpiles. Plant Soil 76:357–363. doi: 10.1007/BF02205593 CrossRefGoogle Scholar
  2. Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Andelman SJ, Fagan WF (2000) Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc Natl Acad Sci USA 97:5954–5959PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bohmann K, Monadjem A, Lehmkuhl Noer C et al (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS One 6:e21441. doi: 10.1371/journal.pone.0021441 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bouché MB (1972) Lombriciens de France, ecologie et systématique. Ann Zool—Ecol Anim 92:45. doi:  10.3917/ls.092.0045
  6. Boyer S, Wratten SD (2010) Using molecular tools to identify New Zealand endemic earthworms in a mine restoration project. Zool Middle East 51:31–40CrossRefGoogle Scholar
  7. Boyer S, Blakemore R, Wratten S (2011a) An integrative taxonomic approach to the identification of three new New Zealand endemic earthworm species (Acanthodrilidae, Octochaetidae: Oligochaeta). Zootaxa 32:21–32Google Scholar
  8. Boyer S, Wratten S, Pizey M, Weber P (2011b) Impact of soil stockpiling and mining rehabilitation on earthworm communities. Pedobiologia 54:S99–S102. doi: 10.1016/j.pedobi.2011.09.006 CrossRefGoogle Scholar
  9. Boyer S, Yeates GW, Wratten SD et al (2011c) Molecular and morphological analyses of faeces to investigate the diet of earthworm predators: example of a carnivorous land snail endemic to New Zealand. Pedobiologia 54:S153–S158. doi: 10.1016/j.pedobi.2011.08.002 CrossRefGoogle Scholar
  10. Boyer S, Wratten SD, Holyoake A et al (2013) Using next-generation sequencing to analyse the diet of a highly endangered land snail (Powelliphanta augusta) feeding on endemic earthworms. PLoS One 8:e75962. doi: 10.1371/journal.pone.0075962 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Braley M, Goldsworthy SD, Page B et al (2010) Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol Ecol Resour 10:466–474. doi: 10.1111/j.1755-0998.2009.02767.x PubMedCrossRefGoogle Scholar
  12. Brown DS, Jarman SN, Symondson WOC (2012a) Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms. Mol Ecol Resour 12:259–266. doi: 10.1111/j.1755-0998.2011.03098.x PubMedCrossRefGoogle Scholar
  13. Brown SDJ, Collins R, Boyer S et al (2012b) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565. doi: 10.1111/j.1755-0998.2011.03108.x PubMedCrossRefGoogle Scholar
  14. Buckley H, Damgaard C (2012) Lorenz R: R code for drawing sample Lorenz curves and to calculate Gini coefficients and Lorenz asymmetry coefficients. In: Buckley HL, Damgaard C. http://pure.au.dk/portal/en/publications/lorenzr(21dbe72d-0f9c-4a3b-9a2c-f364828089d3).html
  15. Buckley TR, James S, Allwood J et al (2011) Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity. Mol Phylogenet Evol 58:85–96. doi: 10.1016/j.ympev.2010.09.024 PubMedCrossRefGoogle Scholar
  16. Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35:295–302. doi: 10.1016/S0038-0717(02)00279-1 CrossRefGoogle Scholar
  17. Clarke KR, Gorley RN (2006) PRIMER v.6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  18. Colbourne R, Powlesland R (1988) Diet of the Stewart Island brown kiwi (Apteryx australis lawryi) at Scollay’s Flat, southern Stewart Island. N Z J Ecol 11:99–104Google Scholar
  19. Damgaard C, Weiner J (2000) Describing inequality in plant size or fecundity. Ecology 81:1139–1142CrossRefGoogle Scholar
  20. Deagle BE, Tollit DJ (2006) Quantitative analysis of prey DNA in pinniped faeces: potential to estimate diet composition? Conserv Genet 8:743–747. doi: 10.1007/s10592-006-9197-7 CrossRefGoogle Scholar
  21. Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038. doi: 10.1111/j.1365-294X.2009.04158.x PubMedCrossRefGoogle Scholar
  22. Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv Genet 11:2039–2048. doi: 10.1007/s10592-010-0096-6 CrossRefGoogle Scholar
  23. Efford M (2000) Consumption of amphipods by the New Zealand land snail Wainuia urnula (Pulmonata: Rhytididae). J Mollusc Stud 66:45–52. doi: 10.1093/mollus/66.1.45 CrossRefGoogle Scholar
  24. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850PubMedCrossRefGoogle Scholar
  25. García-Berthou E, Moreno-Amich R (2000) Food of introduced pumpkinseed sunfish: ontogenetic diet shift and seasonal variation. J Fish Biol 57:29–40. doi: 10.1006/jfbi.2000.1285 CrossRefGoogle Scholar
  26. Gardner W, Broersma K, Naeth A (2010) Influence of biosolids and fertilizer amendments on physical, chemical and microbiological properties of copper mine tailings. Can J Soil Sci 90:571–583. doi: 10.4141/CJSS09067 CrossRefGoogle Scholar
  27. Hill D (1997) Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am J Primatol 322:305–322CrossRefGoogle Scholar
  28. King RA, Vaughan IP, Bell JR et al (2010) Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol Ecol 19:1721–1732. doi: 10.1111/j.1365-294X.2010.04602.x PubMedCrossRefGoogle Scholar
  29. Lake S, Burton H, van den Hoff G (2003) Regional, temporal and fine-scale spatial variation in Weddell seal diet at four coastal locations in east Antarctica. Mar Ecol Prog Ser 254:293–305. doi: 10.3354/meps254293 CrossRefGoogle Scholar
  30. Lindenmayer DB, Manning AD, Smith PL et al (2002) The focal-species approach and landscape restoration: a critique. Conserv Biol 16:338–345CrossRefGoogle Scholar
  31. Milcu A, Schumacher J, Scheu S (2006) Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity. Funct Ecol 20:261–268. doi: 10.1111/j.1365-2435.2006.01098.x CrossRefGoogle Scholar
  32. Murray DC, Bunce M, Cannell BL et al (2011) DNA-based faecal dietary analysis: a comparison of qPCR and high throughput sequencing approaches. PLoS One 6:e25776. doi: 10.1371/journal.pone.0025776 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Piearce T (1978) Gut contents of some lumbiricid earthworms. Pedobiologia 18:153–157Google Scholar
  34. Pompanon F, Deagle BE, Symondson WOC et al (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950. doi: 10.1111/j.1365-294X.2011.05403.x PubMedCrossRefGoogle Scholar
  35. R Development Core Team (2011) R: a language and environment for statistical computingGoogle Scholar
  36. Razgour O, Clare EL, Zeale MRK et al (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol Evol 1:556–570. doi: 10.1002/ece3.49 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Scullion J, Malik A (2000) Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol Biochem 32:119–126CrossRefGoogle Scholar
  38. Silcox M, Teaford M (2002) The diet of worms: an analysis of mole dental microwear. J Mammal 83:804–814CrossRefGoogle Scholar
  39. Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257CrossRefGoogle Scholar
  40. Stehlik LL, Meise CJ (2000) Diet of winter flounder in a New Jersey estuary: ontogenetic change and spatial variation. Estuaries 23:381. doi: 10.2307/1353330 CrossRefGoogle Scholar
  41. Suzuki N, Hoshino K, Murakami K et al (2008) Molecular diet analysis of phyllosoma larvae of the Japanese spiny lobster Panulirus japonicus (Decapoda: Crustacea). Mar Biotechnol 10:49–55. doi: 10.1007/s10126-007-9038-9 PubMedCrossRefGoogle Scholar
  42. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641PubMedCrossRefGoogle Scholar
  43. Walpole M, Leader-Williams N (2002) Tourism and flagship species in conservation. Biodivers Conserv 11:543–547CrossRefGoogle Scholar
  44. Williams PH, Burgess ND, Rahbek C (2000) Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Anim Conserv 3:249–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin R. Waterhouse
    • 1
    Email author
  • Stéphane Boyer
    • 1
    • 2
  • Steve D. Wratten
    • 1
  1. 1.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand
  2. 2.Department of EcologyLincoln UniversityLincolnNew Zealand

Personalised recommendations