Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of salinity on the immune response of an ‘osmotic generalist’ bird

Abstract

Salt stress can suppress the immune function of fish and other aquatic animals, but such an effect has not yet been examined in air-breathing vertebrates that frequently cope with waters (and prey) of contrasting salinities. We investigated the effects of seawater salinity on the strength and cost of mounting an immune response in the dunlin Calidris alpina, a long-distance migratory shorebird that shifts seasonally from freshwater environments during the breeding season to marine environments during migration and the winter period. Phytohaemagglutinin (PHA)-induced skin swelling, basal metabolic rate (BMR), body mass, fat stores, and plasma ions were measured in dunlins acclimated to either freshwater or seawater (salinity: 0.3 and 35.0 ‰, respectively). Seawater-acclimated dunlins mounted a PHA-induced swelling response that was up to 56 % weaker than those held under freshwater conditions, despite ad libitum access to food. Freshwater-acclimated dunlins significantly increased their relative BMR 48 h after PHA injection, whereas seawater-acclimated dunlins did not. However, this differential immune and metabolic response between freshwater- and seawater-acclimated dunlins was not associated with significant changes in body mass, fat stores or plasma ions. Our results indicate that the strength of the immune response of this small-sized migratory shorebird was negatively influenced by the salinity of marine habitats. Further, these findings suggest that the reduced immune response observed under saline conditions might not be caused by an energy or nutrient limitation, and raise questions about the role of osmoregulatory hormones in the modulation of the immune system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body mass changes on the avian T-cell mediated immune response. Can J Zool 79:101–105. doi:10.1139/cjz-79-1-101

  2. Apanius V (1998) Stress and immune defense. Adv Study Behav 27:133–153

  3. Battley PF, Rogers DI, Piersma T, Koolhaas A (2003) Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu 103:97–103

  4. Bennett DC, Gray DA, Hughes MR (2003) Effect of saline intake on water flux and osmotic homeostasis in Pekin ducks (Anas platyrhynchos). J Comp Physiol B 173:27–36. doi:10.1007/s00360-002-0306-8

  5. Bennett GF (1993) Phylogenetic distribution and possible evolution of the avian species of the Haemoproteidae. Syst Parasitol 26:39–44

  6. Bentley PJ (2002) Endocrines and osmoregulation: a comparative account in vertebrates, 2nd edn. Springer, Berlin

  7. Blakey R, Zharikov Y, Skilleter GA (2006) Lack of an osmotic constraint on intake rate of the eastern curlew (Numenius madagascariensis). J Avian Biol 37:299–305. doi:10.1111/j.2006.0908-8857.03828.x

  8. Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379. doi:10.1086/346134

  9. Buehler DM, Piersma T, Matson K, Tieleman BI (2008a) Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. Am Nat 172:783–796. doi:10.1086/592865

  10. Buehler DM, Piersma T, Tieleman BI (2008b) Captive and free-living red knots exhibit differences in non-induced immunity suggesting different immune strategies in different environments. J Avian Biol 39:560–566. doi:10.1111/j.2008.0908-8857.04408.x

  11. Buehler DM, Tieleman BI, Piersma T (2009a) Age and environment affect constitutive immune function in Red Knots (Calidris canutus). J Ornithol 150:815–825. doi:10.1007/s10336-009-0402-6

  12. Buehler DM, Encinas-Viso F, Petit M, Vézina F, Tieleman BI, Piersma T (2009b) Limited access to food and physiological trade-offs in a long-distance migrant shorebird. II. Constitutive immune function and the acute-phase response. Physiol Biochem Zool 82:561–571. doi:10.1086/603635

  13. Burger J, Gochfeld M (1984) Seasonal variation in size and function of the nasal salt gland of the Franklin’s Gull (Larus pipixcan). Comp Biochem Physiol 77:103–110

  14. Bussell JA, Gidman EA, Causton DR, Gwynn-Jones D, Malham SK, Jones MLM, Reynolds B, Seed R (2008) Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol 358:78–85. doi:10.1016/j.jembe.2008.01.018

  15. Cuesta A, Laiz-Carrión R, Del Río MP, Meseguer J, Mancera JM, Esteban MA (2005) Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 18:255–261. doi:10.1016/j.fsi.2004.07.009

  16. Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730. doi:10.1111/j.1365-2656.2011.01813.x

  17. Doch JJ (1997) Salt tolerance of nestling Laughing Gulls: an experimental field investigation. Col Waterbirds 20:449–457

  18. Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22:681–685

  19. Frederick PC (2002) Wading birds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 617–655

  20. Fries CR (1986) Effects of environmental stressors and immunosuppressants on immunity in Fundulus heteroclitus. Am Zool 26:271–282. doi:10.1093/icb/26.1.271

  21. Gessaman JA, Nagy KA (1988) Energy-metabolism: errors in gas exchange conversion factors. Physiol Zool 61:507–513

  22. Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011a) Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. J Exp Biol 214:829–835. doi:10.1242/jeb.048223

  23. Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011b) Metabolic consequences of overlapping food restriction and cell-mediated immune response in a long-distance migratory shorebird, the little ringed plover Charadrius dubius. J Avian Biol 42:259–265. doi:10.1111/j.1600-048X.2011.05323.x

  24. Gutiérrez JS, Dietz MW, Masero JA, Gill RE Jr, Dekinga A, Battley PF, Sánchez-Guzmán JM, Piersma T (2012) Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditions. Funct Ecol 26:236–244. doi:10.1111/j.1365-2435.2011.01929.x

  25. Goldstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 467–483

  26. Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:S571–S582

  27. Hildebrandt JP (1997) Changes in Na+/K+-ATPase expression during adaptive cell differentiation in avian nasal salt gland. J Exp Biol 200:1895–1904

  28. Hill RW (1972) Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. J Appl Physiol 33:261–263

  29. Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A 136:507–524. doi:10.1016/j.cbpb.2003.09.005

  30. Jiang IF, Kumar VB, Lee DN, Weng CF (2008) Acute osmotic stress affects Tilapia (Oreochromis mossambicus) innate immune responses. Fish Shellfish Immunol 25:841–846. doi:10.1016/j.fsi.2008.09.006

  31. Johnston JW, Bildstein KL (1990) Dietary salt as a physiological constraint in white ibis breeding in an estuary. Physiol Zool 63:190–207

  32. Joseph A, Philip R (2007) Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272:87–97. doi:10.1016/j.aquaculture.2007.08.047

  33. Kelly JP (2000) Foraging distribution and energy balance in wintering Dunlin. PhD dissertation, University of California, Davis

  34. Kendeigh SC, Dol’nik VR, Gavrilov VM (1977) Avian energetics. In: Pinowski J, Kendiegh SC (eds) Granivorous birds in ecosystems. Cambridge University Press, New York, pp 127–204

  35. Klaassen M, Ens BJ (1990) Is salt stress a problem for waders wintering on the Banc d’Arguin, Mauritania? Ardea 78:67–74

  36. Klasing KC, Peng RK (1987) Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-1 from chicken macrophages. Dev Comp Immunol 11:385–394. doi:10.1016/0145-305X(87)90082-6

  37. Koteja P (1996) Measuring energy metabolism with open-flow respirometric systems: which design to choose? Funct Ecol 10:675–677

  38. Lee KA, Martin LB, Wikelski MC (2005) Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less invasive congener. Oecologia 145:244–251. doi:10.1007/s00442-005-0113-5

  39. Lei F, Poulin R (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Mar Biol 158:995–1003. doi:10.1007/s00227-011-1625-7

  40. Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158. doi:10.1098/rspb.2002.2185

  41. Martin LB, Gilliam J, Han P, Lee KA, Wikelski M (2005) Corticosterone suppresses immune function in temperate but not tropical house sparrows, Passer domesticus. Gen Comp Endocrinol 140:126–135. doi:10.1016/j.ygcen.2004.10.010

  42. Martin LB, Hasselquist D, Wikelski M (2006a) Immune investments are linked to pace of life in house sparrows. Oecologia 147:565–575. doi:10.1007/s00442-005-0314-y

  43. Martin LB, Han P, Lewittes J, Kuhlman JR, Klasing KC, Wikelski M (2006b) Phytohaemagglutinin (PHA) induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–300. doi:10.1111/j.1365-2435.2006.01094.x

  44. Masero JA (2002) Why don’t Red Knots Calidris canutus feed extensively on the crustacean Artemia? Bird Study 49:304–306

  45. Matozzo V, Monari M, Foschi J, Serrazanetti GP, Cattani O, Marin MG (2007) Effects of salinity on the clam Chamelea gallina. Part I: alterations in immune responses. Mar Biol 151:1051–1058. doi:10.1007/s00227-006-0543-6

  46. McCormick SD, Bradshaw D (2006) Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147:3–8. doi:10.1016/j.ygcen.2005.12.009

  47. McEwen B, Biron C, Brunson K, Bulloch K, Chambers W, Dhabhar F, Goldfarb R, Kitson R, Miller A, Spencer R, Weiss J (1997) The role of adrenalcorticoids as modulators of immune function in health and disease: neural, endocrine, and immune interactions. Brain Res Rev 23:79–133

  48. McNab BK (2002) The physiological ecology of vertebrates. A view from energetics. Cornell University Press, Ithaca

  49. Meissner W (2009) A classification scheme for scoring subcutaneous fat depots of shorebirds. J Field Ornithol 80:289–296. doi:10.1111/j.1557-9263.2009.00232.x

  50. Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396–404

  51. Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284–291. doi:10.1242/jeb.02015

  52. Merino S, Martínez J, Møller AP, Sanabria L, De Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219–222

  53. Nilsson JÅ, Granbom M, Råberg L (2007) Does the strength of an immune response reflect its energetic cost? J Avian Biol 38:488–494. doi:10.1111/j.2007.0908-8857.03919.x

  54. Nyström KGK, Pehrsson O (1988) Salinity as a constraint affecting food and habitat choice of mussel-feeding diving ducks. Ibis 130:94–110. doi:10.1111/j.1474-919X.1988.tb00960.x

  55. Ortiz RM (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831–1844

  56. Owen-Ashley NT, Wingfield JC (2007) Acute phase responses of passerine birds: characterization and seasonal variation. J Ornithol 148:S583–S591. doi:10.1007/s10336-007-0197-2

  57. Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, Cambridge

  58. Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623–631

  59. Piersma T (2002) Energetic bottlenecks and other design constraints in avian annual cycles. Integr Comp Biol 42:51–67

  60. Piersma T, van Gils J, Wiersma P (1996) Family Scolopacidae (sandpipers, snipes and phalaropes). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3., Hoatzin to Auks. Lynx, Barcelona, pp 444–533

  61. Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183–191

  62. Purdue JR, Haines H (1977) Salt water tolerance and water turnover in the Snowy Plover. Auk 94:248–255

  63. Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds—a review. Front Zool 8:26

  64. Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641. doi:10.1098/rspb.1998.0482

  65. Sabat P (2000) Birds in marine and saline environments: living in dry habitats. Rev Chil Hist Nat 73:401–410. doi:10.1007/s00442-006-0377-4

  66. Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioral endocrinology. MIT Press, Cambridge, pp 287–324

  67. Sapolsky R, Romero L, Munck A (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

  68. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, New York

  69. Schmidt-Nielsen K, Kim TY (1964) The effect of salt intake on the size and function of the salt gland of ducks. Auk 81:160–172

  70. Skadhauge E (1981) Osmoregulation in birds. Springer, Berlin

  71. Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

  72. Staaland H (1967) Anatomical and physiological adaptations of the nasal glands in Charadriiformes birds. Comp Biochem Physiol 23:933–944

  73. Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 3:e3295. doi:10.1371/journal.pone.0003295

  74. Tietje WD, Teer JG (1996) Winter feeding ecology of northern shovelers on freshwater and saline wetlands in south Texas. J Wildl Manag 60:843–855

  75. Verhulst S, Riedstra B, Wiersma P (2005) Brood size and immunity costs in zebra finches Taeniopygia guttata. J Avian Biol 36:22–30. doi:10.1111/j.0908-8857.2005.03342.x

  76. Vinkler M, Bainova H, Albrecht T (2010) Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol 24:1081–1086. doi:10.1111/j.1365-2435.2010.01711.x

  77. Vinkler M, Albrecht T (2011) Handling ‘immunocompetence’ in ecological studies: do we operate with confused terms? J Avian Biol 42:490–493. doi:10.1111/j.1600-048X.2011.05499.x

  78. Warnock N, Elphick C, Rubega MA (2002) Shorebirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 581–615

  79. Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals. Blackwell, Oxford

Download references

Acknowledgments

We thank Juan G. Navedo for assistance in the field. Birds were captured with permits from Junta de Extremadura (permit no. CN0001/10/AAN). Project CGL2011-27485 (Spanish Ministry of Science and Innovation) and a grant to J.S.G. from Junta of Extremadura provided financial support for this study.

Author information

Correspondence to Jorge S. Gutiérrez.

Additional information

Communicated by Oliver Love.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutiérrez, J.S., Abad-Gómez, J.M., Villegas, A. et al. Effects of salinity on the immune response of an ‘osmotic generalist’ bird. Oecologia 171, 61–69 (2013). https://doi.org/10.1007/s00442-012-2405-x

Download citation

Keywords

  • Basal metabolic rate
  • Calidris alpina
  • Immune responsiveness
  • Migration
  • Osmoregulation