Advertisement

Cell and Tissue Research

, Volume 379, Issue 2, pp 231–243 | Cite as

Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle

  • Jean-Jacques Candelier
  • Hans-Kristian LorenzoEmail author
Review
  • 50 Downloads

Abstract

Nephrotic syndrome is traditionally defined using the triad of edema, hypoalbuminemia, and proteinuria, but this syndrome is very heterogeneous and difficult to clarify. Its idiopathic form (INS) is probably the most harmful and essentially comprises two entities: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). We will consider some hypotheses regarding the mechanisms underlying INS: (i) the presence of several glomerular permeability factors in the sera of patients that alter the morphology and function of podocytes leading to proteinuria, (ii) the putative role of immune cells. Thanks to recent data, our understanding of these disorders is evolving towards a more multifactorial origin. In this context, circulating factors may be associated according to sequential kinetic mechanisms or micro-environmental changes that need to be determined. In addition, the resulting proteinuria may trigger more proteinuria enhancing the glomerular destabilization.

Keywords

Nephrotic syndrome Permeability factors Minimal change disease Focal segmental glomerulosclerosis Proteinuria 

Abbreviations

SCF

Serum circulating factor

INS

Idiopathic nephrotic syndrome

FSGS

Focal segmental glomerulosclerosis

rFSGS

Recurrent focal segmental glomerulosclerosis

MCD

Minimal change disease

CLC-1

Cardiotrophin-like cytokine-1

suPAR

Soluble urokinase plasminogen activator receptor

APOL1

Apolipoprotein A-I

Notes

Funding information

Hans K. Lorenzo was supported by the “ Fondation du Rein”/“Fondation pour la Recherche Médicale”, grant number R16099LL.

Compliance with ethical statements

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alachkar N, Wei C, Arend LJ et al (2013) Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation 96:649–656.  https://doi.org/10.1097/TP.0b013e31829eda4f CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alachkar N, Li J, Matar D et al (2018) Monitoring suPAR levels in post-kidney transplant focal segmental glomerulosclerosis treated with therapeutic plasma exchange and rituximab. BMC Nephrol:19.  https://doi.org/10.1186/s12882-018-1177-x
  3. Artero ML, Sharma R, Savin VJ, Vincenti F (1994) Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomerulosclerosis. Am J Kidney Dis Off J Natl Kidney Found 23:574–581CrossRefGoogle Scholar
  4. Ashworth CT, James JA (1961) Glomerular excretion of macromolecular substances. Electron microscopic study of rat kidney after administration of human serum albumin. Am J Pathol 39:307–316PubMedPubMedCentralGoogle Scholar
  5. Audard V, Zhang S, Copie-Bergman C et al (2010) Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-reed Sternberg cells and podocytes. Blood 115:3756–3762.  https://doi.org/10.1182/blood-2009-11-251132 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bakker WW, Borghuis T, Harmsen MC et al (2005a) Protease activity of plasma hemopexin. Kidney Int 68:603–610.  https://doi.org/10.1111/j.1523-1755.2005.00438.x CrossRefPubMedGoogle Scholar
  7. Bakker WW, van Dael CML, Pierik LJWM et al (2005b) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol Berl Ger 20:1410–1415.  https://doi.org/10.1007/s00467-005-1936-3 CrossRefGoogle Scholar
  8. Barisoni L, Schnaper HW, Kopp JB (2007) A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol CJASN 2:529–542.  https://doi.org/10.2215/CJN.04121206 CrossRefPubMedGoogle Scholar
  9. Beaudreuil S, Zhang X, Herr F et al (2019) Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One 14:e0219353.  https://doi.org/10.1371/journal.pone.0219353 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beckerman P, Bi-Karchin J, Park ASD et al (2017) Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 23:429–438.  https://doi.org/10.1038/nm.4287 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bertelli R, Bonanni A, Caridi G et al (2018) Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med 5:170.  https://doi.org/10.3389/fmed.2018.00170 CrossRefGoogle Scholar
  12. Bierzynska A, Soderquest K, Koziell A (2015) Genes and Podocytes-new insights into mechanisms of Podocytopathy. Front Endocrinol 5.  https://doi.org/10.3389/fendo.2014.00226
  13. Bock ME, Price HE, Gallon L, Langman CB (2013) Serum soluble Urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol 8:1304–1311.  https://doi.org/10.2215/CJN.07680712 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bouatou Y, Koessler T, Oniszczuk J et al (2017) Nephrotic syndrome in small cell lung Cancer and induction of C-Mip in Podocytes. Am J Kidney Dis Off J Natl Kidney Found 69:477–480.  https://doi.org/10.1053/j.ajkd.2016.09.026 CrossRefGoogle Scholar
  15. Boumediene A, Vachin P, Sendeyo K et al (2018) NEPHRUTIX: a randomized, double-blind, placebo vs rituximab-controlled trial assessing T-cell subset changes in minimal change Nephrotic syndrome. J Autoimmun 88:91–102.  https://doi.org/10.1016/j.jaut.2017.10.006 CrossRefPubMedGoogle Scholar
  16. Boyer O, Dorval G, Servais A (2017) Hereditary podocytopathies in adults: the next generation. Kidney Dis 3:50–56.  https://doi.org/10.1159/000477243 CrossRefGoogle Scholar
  17. Canaud G, Dion D, Zuber J et al (2010) Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 25:1321–1328.  https://doi.org/10.1093/ndt/gfp500 CrossRefPubMedGoogle Scholar
  18. Cara-Fuentes G, Segarra A, Silva-Sanchez C et al (2017) Angiopoietin-like-4 and minimal change disease. PLoS One 12:e0176198.  https://doi.org/10.1371/journal.pone.0176198 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cathelin D, Placier S, Ploug M et al (2014) Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol JASN 25:1662–1668.  https://doi.org/10.1681/ASN.2013040425 CrossRefPubMedGoogle Scholar
  20. Charba DS, Wiggins RC, Goyal M et al (2009) Antibodies to protein tyrosine phosphatase receptor type O (PTPro) increase glomerular albumin permeability (P(alb)). Am J Physiol Ren Physiol 297:F138–F144.  https://doi.org/10.1152/ajprenal.00122.2008 CrossRefGoogle Scholar
  21. Chatzigeorgiou A, Lyberi M, Chatzilymperis G et al (2009) CD40/CD40L signaling and its implication in health and disease. BioFactors Oxf Engl 35:474–483.  https://doi.org/10.1002/biof.62 CrossRefGoogle Scholar
  22. Cheung PK, Klok PA, Baller JF, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57:1512–1520.  https://doi.org/10.1046/j.1523-1755.2000.00996.x CrossRefPubMedGoogle Scholar
  23. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048.  https://doi.org/10.1007/s00424-009-0685-8 CrossRefPubMedGoogle Scholar
  24. Chun J, Zhang J-Y, Wilkins MS et al (2019) Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci 116:3712–3721.  https://doi.org/10.1073/pnas.1820414116 CrossRefPubMedGoogle Scholar
  25. Clement LC, Avila-Casado C, Macé C et al (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122.  https://doi.org/10.1038/nm.2261 CrossRefPubMedGoogle Scholar
  26. Clement LC, Macé C, Avila-Casado C et al (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20:37–46.  https://doi.org/10.1038/nm.3396 CrossRefPubMedGoogle Scholar
  27. Colucci M, Corpetti G, Emma F, Vivarelli M (2018) Immunology of idiopathic nephrotic syndrome. Pediatr Nephrol Berl Ger 33:573–584.  https://doi.org/10.1007/s00467-017-3677-5 CrossRefGoogle Scholar
  28. Colucci M, Carsetti R, Cascioli S et al (2019) B cell phenotype in pediatric idiopathic nephrotic syndrome. Pediatr Nephrol Berl Ger 34:177–181.  https://doi.org/10.1007/s00467-018-4095-z CrossRefGoogle Scholar
  29. Cortazar FB, Rosenthal J, Laliberte K, Niles JL (2019) Continuous B-cell depletion in frequently relapsing, steroid-dependent and steroid-resistant nephrotic syndrome. Clin Kidney J 12:224–231.  https://doi.org/10.1093/ckj/sfy067 CrossRefPubMedGoogle Scholar
  30. D’Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365:2398–2411.  https://doi.org/10.1056/NEJMra1106556 CrossRefPubMedGoogle Scholar
  31. Dantal J, Testa A, Bigot E, Soulillou JP (1992) Effects of plasma-protein a immunoadsorption on idiopathic nephrotic syndrome recurring after renal transplantation. Ann Med Interne (Paris) 143(Suppl 1):48–51Google Scholar
  32. De S, Kuwahara S, Saito A (2014) The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes 4:333–355.  https://doi.org/10.3390/membranes4030333 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Delville M, Sigdel TK, Wei C et al (2014) A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 6:256ra136.  https://doi.org/10.1126/scitranslmed.3008538 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet Lond Engl 362:629–639.  https://doi.org/10.1016/S0140-6736(03)14184-0 CrossRefGoogle Scholar
  35. Farquhar MG, Palade GE (1962) Functional evidence for the existence of a third cell type in the renal glomerulus: phagocytosis of filtration residues by a distinctive “third” cell. J Cell Biol 13:55–87.  https://doi.org/10.1083/jcb.13.1.55 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Faul C, Donnelly M, Merscher-Gomez S et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nat Med 14:931–938.  https://doi.org/10.1038/nm.1857 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Feld SM, Figueroa P, Savin V et al (1998) Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis in native kidneys. Am J Kidney Dis Off J Natl Kidney Found 32:230–237CrossRefGoogle Scholar
  38. Fogo AB (2015) Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 11:76–87.  https://doi.org/10.1038/nrneph.2014.216 CrossRefPubMedGoogle Scholar
  39. Fogo AB, Lusco MA, Najafian B, Alpers CE (2015) AJKD atlas of renal pathology: minimal change disease. Am J Kidney Dis Off J Natl Kidney Found 66:376–377.  https://doi.org/10.1053/j.ajkd.2015.04.006 CrossRefGoogle Scholar
  40. Fornoni A, Sageshima J, Wei C et al (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3:85ra46.  https://doi.org/10.1126/scitranslmed.3002231 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Friedman DJ, Kozlitina J, Genovese G et al (2011) Population-based risk assessment of APOL1 on renal disease. J Am Soc Nephrol JASN 22:2098–2105.  https://doi.org/10.1681/ASN.2011050519 CrossRefPubMedGoogle Scholar
  42. Gallon L, Leventhal J, Skaro A et al (2012) Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 366:1648–1649.  https://doi.org/10.1056/NEJMc1202500 CrossRefPubMedGoogle Scholar
  43. Garin EH, Mu W, Arthur JM et al (2010) Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 78:296–302.  https://doi.org/10.1038/ki.2010.143 CrossRefPubMedGoogle Scholar
  44. Genovese G, Friedman DJ, Ross MD et al (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845.  https://doi.org/10.1126/science.1193032 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gentili A, Tangheroni W, Gelli G (1954) Proteinuria caused by transfusion of blood from nephrotic to non-nephrotic individuals. Minerva Med 45:603–608PubMedGoogle Scholar
  46. Gianesello L, Priante G, Ceol M et al (2017) Albumin uptake in human podocytes: a possible role for the cubilin-amnionless (CUBAM) complex. Sci Rep 7.  https://doi.org/10.1038/s41598-017-13789-z
  47. Gonçalves GL, Costa-Pessoa JM, Thieme K et al (2018) Intracellular albumin overload elicits endoplasmic reticulum stress and PKC-delta/p38 MAPK pathway activation to induce podocyte apoptosis. Sci Rep 8:18012.  https://doi.org/10.1038/s41598-018-36933-9 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Granado D, Müller D, Krausel V et al (2017) Intracellular APOL1 risk variants cause cytotoxicity accompanied by energy depletion. J Am Soc Nephrol JASN 28:3227–3238.  https://doi.org/10.1681/ASN.2016111220 CrossRefPubMedGoogle Scholar
  49. Han M-H, Kim Y-J (2016) Practical application of Columbia classification for focal segmental Glomerulosclerosis. Biomed Res Int 2016:9375753.  https://doi.org/10.1155/2016/9375753 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Harita Y (2018) Application of next-generation sequencing technology to diagnosis and treatment of focal segmental glomerulosclerosis. Clin Exp Nephrol 22:491–500.  https://doi.org/10.1007/s10157-017-1449-y CrossRefPubMedGoogle Scholar
  51. Harita Y, Ishizuka K, Tanego A et al (2014) Decreased glomerular filtration as the primary factor of elevated circulating suPAR levels in focal segmental glomerulosclerosis. Pediatr Nephrol Berl Ger 29:1553–1560.  https://doi.org/10.1007/s00467-014-2808-5 CrossRefGoogle Scholar
  52. Hayek SS, Koh KH, Grams ME et al (2017) A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med 23:945–953.  https://doi.org/10.1038/nm.4362 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hoyer JR, Vernier RL, Najarian JS et al (1972) Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet Lond Engl 2:343–348.  https://doi.org/10.1016/s0140-6736(72)91734-5 CrossRefGoogle Scholar
  54. Huang J, Liu G, Zhang Y-M et al (2013) Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int 84:366–372.  https://doi.org/10.1038/ki.2013.55 CrossRefPubMedGoogle Scholar
  55. Jamin A, Berthelot L, Couderc A et al (2018) Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. J Autoimmun 89:149–161.  https://doi.org/10.1016/j.jaut.2017.12.014 CrossRefPubMedGoogle Scholar
  56. Jarad G, Knutsen RH, Mecham RP, Miner JH (2016) Albumin contributes to kidney disease progression in Alport syndrome. Am J Physiol Ren Physiol 311:F120–F130.  https://doi.org/10.1152/ajprenal.00456.2015 CrossRefGoogle Scholar
  57. Kaverina NV, Eng DG, Freedman BS et al (2019) Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int 96:597–611.  https://doi.org/10.1016/j.kint.2019.03.014 CrossRefPubMedGoogle Scholar
  58. Kemper MJ, Wolf G, Müller-Wiefel DE (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 344:386–387.  https://doi.org/10.1056/NEJM200102013440517 CrossRefPubMedGoogle Scholar
  59. Kemper MJ, Lehnhardt A, Zawischa A, Oh J (2014) Is rituximab effective in childhood nephrotic syndrome? Yes and no. Pediatr Nephrol Berl Ger 29:1305–1311.  https://doi.org/10.1007/s00467-013-2529-1 CrossRefGoogle Scholar
  60. Kim SH, Park SJ, Han KH et al (2016) Pathogenesis of minimal change nephrotic syndrome: an immunological concept. Korean J Pediatr 59:205–211.  https://doi.org/10.3345/kjp.2016.59.5.205 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kitao T, Kimata T, Kanda E et al (2014) Soluble urokinase receptor in a toddler with focal segmental glomerulosclerosis. Kidney Int 86:208.  https://doi.org/10.1038/ki.2014.135 CrossRefPubMedGoogle Scholar
  62. Königshausen E, Sellin L (2016) Circulating permeability factors in primary focal segmental Glomerulosclerosis: a review of proposed candidates. Biomed Res Int 2016:3765608.  https://doi.org/10.1155/2016/3765608 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kopp JB, Heymann J (2019) C-Src is in the effector pathway linking uPAR and podocyte injury. J Clin Invest 129:1827–1829.  https://doi.org/10.1172/JCI127927 CrossRefPubMedGoogle Scholar
  64. Koyama A, Fujisaki M, Kobayashi M et al (1991) A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 40:453–460CrossRefGoogle Scholar
  65. Kronbichler A, Saleem MA, Meijers B, Shin JI (2016) Soluble Urokinase receptors in focal segmental Glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:1–14.  https://doi.org/10.1155/2016/2068691 CrossRefGoogle Scholar
  66. Lagrue G, Xheneumont S, Branellec A et al (1975) A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomed Publiee Pour AAICIG 23:37–40Google Scholar
  67. Lagrue G, Branellec A, Niaudet P et al (1991) Transmission of nephrotic syndrome to two neonates. Spontaneous regression. Presse Medicale Paris Fr 1983 20:255–257Google Scholar
  68. Lai K-W, Wei C-L, Tan L-K et al (2007) Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol JASN 18:1476–1485.  https://doi.org/10.1681/ASN.2006070710 CrossRefPubMedGoogle Scholar
  69. Lapillonne H, Leclerc A, Ulinski T et al (2008) Stem cell mobilization in idiopathic steroid-sensitive nephrotic syndrome. Pediatr Nephrol Berl Ger 23:1251–1256.  https://doi.org/10.1007/s00467-008-0793-2 CrossRefGoogle Scholar
  70. Le Berre L, Hervé C, Buzelin F et al (2005) Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int 68:2079–2090.  https://doi.org/10.1111/j.1523-1755.2005.00664.x CrossRefPubMedGoogle Scholar
  71. Le Berre L, Bruneau S, Renaudin K et al (2011) Development of initial idiopathic nephrotic syndrome and post-transplantation recurrence: evidence of the same biological entity. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 26:1523–1532.  https://doi.org/10.1093/ndt/gfq597 CrossRefGoogle Scholar
  72. Lennon R, Singh A, Welsh GI et al (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol JASN 19:2140–2149.  https://doi.org/10.1681/ASN.2007080940 CrossRefPubMedGoogle Scholar
  73. Maas RJH, Wetzels JFM, Deegens JKJ (2012) Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int 81:1043–1044.  https://doi.org/10.1038/ki.2012.32 CrossRefPubMedGoogle Scholar
  74. Maas RJH, Deegens JKJ, Wetzels JFM (2013) Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol Berl Ger 28:1041–1048.  https://doi.org/10.1007/s00467-013-2452-5 CrossRefGoogle Scholar
  75. Maas RJ, Deegens JK, Smeets B et al (2016) Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 12:768–776.  https://doi.org/10.1038/nrneph.2016.147 CrossRefPubMedGoogle Scholar
  76. McCarthy ET, Sharma M, Savin VJ (2010) Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol CJASN 5:2115–2121.  https://doi.org/10.2215/CJN.03800609 CrossRefPubMedGoogle Scholar
  77. Meijers B, Maas RJH, Sprangers B et al (2014) The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int 85:636–640.  https://doi.org/10.1038/ki.2013.505 CrossRefPubMedGoogle Scholar
  78. Morath C, Wei C, Macher-Goeppinger S et al (2013) Management of severe recurrent focal segmental glomerulosclerosis through circulating soluble urokinase receptor modification. Am J Ther 20:226–229.  https://doi.org/10.1097/MJT.0b013e3182811aca CrossRefPubMedGoogle Scholar
  79. Morigi M, Buelli S, Angioletti S et al (2005) In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am J Pathol 166:1309–1320.  https://doi.org/10.1016/S0002-9440(10)62350-4 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Müller-Deile J, Schenk H, Schroder P et al (2019) Circulating factors cause proteinuria in parabiotic zebrafish. Kidney Int.  https://doi.org/10.1016/j.kint.2019.02.013 CrossRefGoogle Scholar
  81. Musetti C, Quaglia M, Cena T et al (2015) Circulating suPAR levels are affected by glomerular filtration rate and proteinuria in primary and secondary glomerulonephritis. J Nephrol 28:299–305.  https://doi.org/10.1007/s40620-014-0137-1 CrossRefPubMedGoogle Scholar
  82. Okamura K, Dummer P, Kopp J et al (2013) Endocytosis of albumin by Podocytes elicits an inflammatory response and induces apoptotic cell death. PLoS One 8:e54817.  https://doi.org/10.1371/journal.pone.0054817 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Page NM, Butlin DJ, Lomthaisong K, Lowry PJ (2001) The human apolipoprotein L gene cluster: identification, classification, and sites of distribution. Genomics 74:71–78.  https://doi.org/10.1006/geno.2001.6534 CrossRefPubMedGoogle Scholar
  84. Pal A, Kaskel F (2016) History of Nephrotic syndrome and evolution of its treatment. Front Pediatr 4.  https://doi.org/10.3389/fped.2016.00056
  85. Perosa F, Favoino E, Caragnano MA, Dammacco F (2006) Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor. Blood 107:1070–1077.  https://doi.org/10.1182/blood-2005-04-1769 CrossRefPubMedGoogle Scholar
  86. Puelles VG, Cullen-McEwen LA, Taylor GE et al (2016) Human podocyte depletion in association with older age and hypertension. Am J Physiol Ren Physiol 310:F656–F668.  https://doi.org/10.1152/ajprenal.00497.2015 CrossRefGoogle Scholar
  87. Ramezani A, Devaney JM, Cohen S et al (2015) Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: a pilot study. Eur J Clin Investig 45:394–404.  https://doi.org/10.1111/eci.12420 CrossRefGoogle Scholar
  88. Reiser J (2013) Circulating permeability factor suPAR: from concept to discovery to clinic. Trans Am Clin Climatol Assoc 124:133–138PubMedPubMedCentralGoogle Scholar
  89. Reiser J, von Gersdorff G, Loos M et al (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397.  https://doi.org/10.1172/JCI20402 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Rosenberg AZ, Kopp JB (2017) Focal Segmental Glomerulosclerosis. Clin J Am Soc Nephrol CJASN 12:502–517.  https://doi.org/10.2215/CJN.05960616 CrossRefPubMedGoogle Scholar
  91. Rudnicki M (2016) FSGS recurrence in adults after renal transplantation. Biomed Res Int 2016:1–7.  https://doi.org/10.1155/2016/3295618 CrossRefGoogle Scholar
  92. Saleem MA (2018) What is the role of soluble Urokinase-type plasminogen activator in renal disease? Nephron 139:334–341.  https://doi.org/10.1159/000490118 CrossRefPubMedGoogle Scholar
  93. Savin VJ, McCarthy ET, Sharma R et al (2008) Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res J Lab Clin Med 151:288–292.  https://doi.org/10.1016/j.trsl.2008.04.001 CrossRefGoogle Scholar
  94. Savin VJ, Sharma M, Zhou J et al (2015) Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015:714964.  https://doi.org/10.1155/2015/714964 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Savin VJ, Sharma M, Zhou J et al (2017) Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed Res Int 2017:6232616.  https://doi.org/10.1155/2017/6232616 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schenk H, Müller-Deile J, Schmitt R et al (2017) Removal of focal segmental glomerulosclerosis (FSGS) factor suPAR using CytoSorb. J Clin Apher 32:444–452.  https://doi.org/10.1002/jca.21538 CrossRefPubMedGoogle Scholar
  97. Sellier-Leclerc A-L, Duval A, Riveron S et al (2007) A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol JASN 18:2732–2739.  https://doi.org/10.1681/ASN.2006121346 CrossRefPubMedGoogle Scholar
  98. Sendeyo K, Audard V, Zhang S et al (2013) Upregulation of c-mip is closely related to podocyte dysfunction in membranous nephropathy. Kidney Int 83:414–425.  https://doi.org/10.1038/ki.2012.426 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sgambat K, Banks M, Moudgil A (2013) Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol Berl Ger 28:2131–2135.  https://doi.org/10.1007/s00467-013-2539-z CrossRefGoogle Scholar
  100. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet Lond Engl 2:556–560.  https://doi.org/10.1016/s0140-6736(74)91880-7 CrossRefGoogle Scholar
  101. Sharma M, Zhou J, Gauchat J-F et al (2015) Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res J Lab Clin Med 166:384–398.  https://doi.org/10.1016/j.trsl.2015.03.002 CrossRefGoogle Scholar
  102. Sinha A, Bajpai J, Saini S et al (2014) Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int 85:649–658.  https://doi.org/10.1038/ki.2013.546 CrossRefPubMedGoogle Scholar
  103. Sinha A, Bhatia D, Gulati A et al (2015) Efficacy and safety of rituximab in children with difficult-to-treat nephrotic syndrome. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 30:96–106.  https://doi.org/10.1093/ndt/gfu267 CrossRefGoogle Scholar
  104. Slot O, Brünner N, Locht H et al (1999) Soluble urokinase plasminogen activator receptor in plasma of patients with inflammatory rheumatic disorders: increased concentrations in rheumatoid arthritis. Ann Rheum Dis 58:488–492.  https://doi.org/10.1136/ard.58.8.488 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Smeets B, Kuppe C, Sicking E-M et al (2011) Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol JASN 22:1262–1274.  https://doi.org/10.1681/ASN.2010090970 CrossRefPubMedGoogle Scholar
  106. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36.  https://doi.org/10.1038/nrm2821 CrossRefPubMedGoogle Scholar
  107. Spinale JM, Mariani LH, Kapoor S et al (2015) A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int 87:564–574.  https://doi.org/10.1038/ki.2014.346 CrossRefPubMedGoogle Scholar
  108. Staeck O, Slowinski T, Lieker I et al (2015) Recurrent primary focal segmental Glomerulosclerosis managed with intensified plasma exchange and concomitant monitoring of soluble Urokinase-type plasminogen activator receptor-mediated Podocyte β3-integrin activation. Transplantation 99:2593–2597.  https://doi.org/10.1097/TP.0000000000000914 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Tanaka R, Yoshikawa N, Nakamura H, Ito H (1992) Infusion of peripheral blood mononuclear cell products from nephrotic children increases albuminuria in rats. Nephron 60:35–41.  https://doi.org/10.1159/000186702 CrossRefPubMedGoogle Scholar
  110. Tojo A, Onozato ML, Kitiyakara C et al (2008) Glomerular albumin filtration through podocyte cell body in puromycin aminonucleoside nephrotic rat. Med Mol Morphol 41:92–98.  https://doi.org/10.1007/s00795-008-0397-8 CrossRefPubMedGoogle Scholar
  111. Trachtman H, Vento S, Herreshoff E et al (2015) Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol 16:111.  https://doi.org/10.1186/s12882-015-0094-5 CrossRefPubMedPubMedCentralGoogle Scholar
  112. van den Berg JG, Weening JJ (2004) Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci Lond Engl 1979 107:125–136.  https://doi.org/10.1042/CS20040095 CrossRefGoogle Scholar
  113. Vanhollebeke B, Pays E (2006) The function of apolipoproteins L. Cell Mol Life Sci CMLS 63:1937–1944.  https://doi.org/10.1007/s00018-006-6091-x CrossRefPubMedGoogle Scholar
  114. Wei C, El Hindi S, Li J et al (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17:952–960.  https://doi.org/10.1038/nm.2411 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wei C, Sigdel TK, Sarwal MM, Reiser J (2015) Circulating CD40 autoantibody and suPAR synergy drives glomerular injury. Ann Transl Med 3:300.  https://doi.org/10.3978/j.issn.2305-5839.2015.11.08 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wei C, Li J, Adair BD et al (2019) uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 129:1946–1959.  https://doi.org/10.1172/JCI124793 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Yan Y, Vasudevan S, Nguyen H et al (2007) Extracellular interaction between hCD98 and the PDZ class II domain of hCASK in intestinal epithelia. J Membr Biol 215:15–26.  https://doi.org/10.1007/s00232-007-9001-8 CrossRefPubMedGoogle Scholar
  118. Yoshikawa N, Ito H, Akamatsu R et al (1986) Glomerular podocyte vacuolation in focal segmental glomerulosclerosis. Arch Pathol Lab Med 110:394–398PubMedGoogle Scholar
  119. Zhang SY, Kamal M, Dahan K et al (2010) C-mip impairs Podocyte proximal signaling and induces heavy proteinuria. Sci Signal 3:ra39–ra39.  https://doi.org/10.1126/scisignal.2000678 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22:32–38PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INSERM U1197, Hôpital Paul Brousse14 Avenue Paul Vaillant CouturierVillejuifFrance
  2. 2.Université Paris-SaclayCampus Universitaire d’OrsayOrsayFrance
  3. 3.Service de Néphrologie, Hôpital BicêtreFaculté de Médecine Paris-SaclayLe Kremlin-BicêtreFrance

Personalised recommendations