Toll-like receptor bioactivity in endothelial progenitor cells

  • Morteza Heidarzadeh
  • Fatemeh RoodbariEmail author
  • Mehdi Hassanpour
  • Mahdi Ahmadi
  • Shirin Saberianpour
  • Reza RahbarghaziEmail author


Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.


Endothelial progenitor cells Toll-like receptors Functional dynamics Angiogenesis 



We would like to thank the personnel of Stem Cell Research Center.

Compliance with ethical statements

Conflict of interest

The authors declare that they have no conflict of interest.


This work was financially supported by a grant (IR.TBZMED.REC.1397.998) from Tabriz University of Medical Sciences.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8:E250PubMedCrossRefGoogle Scholar
  2. Chen Q-H, Liu A-R, Qiu H-B, Yang Y (2015) Interaction between mesenchymal stem cells and endothelial cells restores endothelial permeability via paracrine hepatocyte growth factor in vitro. Stem Cell Res Ther 6:44PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692PubMedCrossRefGoogle Scholar
  4. Cribbs SK, Sutcliffe DJ, Taylor WR, Rojas M, Easley KA, Tang L, Brigham KL, Martin GS (2012) Circulating endothelial progenitor cells inversely associate with organ dysfunction in sepsis. Intensive Care Med 38:429–436PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dana N, Vaseghi G, Javanmard SH (2019) Crosstalk between peroxisome proliferator-activated receptors and Toll-like receptors: a systematic review. Adv Pharm Bull 9:12–21PubMedPubMedCentralCrossRefGoogle Scholar
  6. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–265PubMedPubMedCentralCrossRefGoogle Scholar
  7. De Nardo D (2015) Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 74:181–189PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dickinson GS, Levenson EA, Walker JA, Kearney JF, Alugupalli KR (2018) IL-7 enables antibody responses to bacterial polysaccharides by promoting B cell receptor diversity. J Immunol 201:1229–1240PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dominguez-Villar M, de Marcken M, Dhaliwal K (2018) Differential signaling through TLR7 or TLR8 determines the phenotype of human monocytes during RNA virus infection. J Immunol 200:169.6Google Scholar
  10. Donndorf P, Abubaker S, Vollmar B, Rimmbach C, Steinhoff G, Kaminski A (2017) Therapeutic progenitor cell application for tissue regeneration: Analyzing the impact of toll-like receptor signaling on c-kit+ cell migration following ischemia-reperfusion injury in vivo. Microvasc Res 112:87–92PubMedCrossRefGoogle Scholar
  11. Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J Immunol 166:2018–2024PubMedCrossRefGoogle Scholar
  12. Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol:453–464PubMedCrossRefGoogle Scholar
  13. Gential GP, Ho NI, Chiodo F, Meeuwenoord N, Ossendorp F, Overkleeft HS, van der Marel GA, Filippov DV (2016) Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates. Bioorg Med Chem Lett 26:3641–3645PubMedCrossRefGoogle Scholar
  14. Gewirtz AT, Zhang B (2018) TLR5 ligands, therapeutic methods, and compositions related thereto. PatentGoogle Scholar
  15. Gnauck A, Lentle RG, Kruger MC (2016) The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int Rev Immunol 35:189–218PubMedCrossRefGoogle Scholar
  16. Goloviznina NA, Verghese SC, me Yoon Y, Taratula O, Marks DL, Kurre P (2016) Mesenchymal stromal cell-derived extracellular vesicles promote myeloid-biased multipotent hematopoietic progenitor expansion via toll-like receptor engagement. J Biol Chem 292:3541CrossRefGoogle Scholar
  17. Grasselli C, Ferrari D, Zalfa C, Soncini M, Mazzoccoli G, Facchini FA, Marongiu L, Granucci F, Copetti M, Vescovi AL (2018) Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation. Cell Death Dis 9:280PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, Li T, Chen J (2015) Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 8:65PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hassanpour M, Cheraghi O, Siavashi V, Rahbarghazi R, Nouri M (2016) A reversal of age-dependent proliferative capacity of endothelial progenitor cells from different species origin in in vitro condition. J Cardiovasc Thorac Res 8:102–106PubMedPubMedCentralCrossRefGoogle Scholar
  20. He J, Xiao Z, Chen X, Chen M, Fang L, Yang M, Lv Q, Li Y, Li G, Hu J (2010) The expression of functional toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs). J Cell Biochem 111:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  21. He M, Bianchi ME, Coleman TR, Tracey KJ, Al-Abed Y (2018) Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol Med 13:24–31Google Scholar
  22. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA, Hernandez G, Murray P, De Backer D (2016) The endothelium in sepsis. Shock. 45:259–270PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ishida I, Kubo H, Suzuki S, Suzuki T, Akashi S, Inoue K, Maeda S, Kikuchi H, Sasaki H, Kondo T (2002a) Hypoxia diminishes Toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J Immunol 15:169Google Scholar
  24. Ishida I, Kubo H, Suzuki S, Suzuki T, Akashi S, Inoue K, Maeda S, Kikuchi H, Sasaki H, Kondo T (2002b) Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J Immunol 169:2069–2075PubMedCrossRefGoogle Scholar
  25. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995PubMedCrossRefGoogle Scholar
  26. Jiao D, Wong C-K, Qiu H-N, Dong J, Cai Z, Chu M, Hon K-L, Tsang MS-M, Lam CW-K (2016) NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell Mol Immunol 13:535–550PubMedCrossRefGoogle Scholar
  27. Khakpour S, Wilhelmsen K, Hellman J (2015) Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate immunity 21:827–846PubMedCrossRefGoogle Scholar
  28. Kung C-T, Su C-M, Chen CT, Cheng H-H, Chang M-W, Hung C-W, Hung S-C, Chang W-N, Tsai N-W, Wang H-C (2016) Circulating endothelial progenitor cells may predict outcomes in adult patients with severe sepsis in the emergency department. Clin Chim Acta 455:1–6PubMedCrossRefGoogle Scholar
  29. Lai F-B, Liu W-T, Jing Y-Y, Yu G-F, Han Z-P, Yang X, Zeng J-X, Zhang H-J, Shi R-Y, Li X-Y (2016) Lipopolysaccharide supports maintaining the stemness of CD133+ hepatoma cells through activation of the NF-κB/HIF-1α pathway. Cancer Lett 378:131–141PubMedCrossRefGoogle Scholar
  30. Lanuti P, Rotta G, Almici C, Avvisati G, Budillon A, Doretto P, Malara N, Marini M, Neva A, Simeone P (2016) Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR 2 and CD 133, are not detectable in healthy peripheral and cord blood. Cytometry A 89:259–270PubMedCrossRefGoogle Scholar
  31. Leskinen K, Varjosalo M, Li Z, Li C-M, Skurnik M (2015) Expression of the Yersinia enterocolitica O: 3 LPS O-antigen and outer core gene clusters is RfaH-dependent. Microbiology 161:1282–1294PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lodowska J, Wolny D, Jaworska-Kik M, Kurkiewicz S, Dzierżewicz Z, Węglarz L (2012) The chemical composition of endotoxin isolated from intestinal strain of Desulfovibrio desulfuricans. ScientificWorldJournal. 2012:647352PubMedPubMedCentralGoogle Scholar
  33. Maleszewska M, Vanchin B, Harmsen MC, Krenning G (2016) The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis 19:9–24PubMedCrossRefPubMedCentralGoogle Scholar
  34. Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M (2007) Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 13:1154–1160PubMedCrossRefGoogle Scholar
  35. Meamar R, Nikyar H, Dehghani L, Talebi M, Dehghani M, Ghasemi M, Ansari B, Saadatnia M (2016) The role of endothelial progenitor cells in transient ischemic attack patients for future cerebrovascular events. Journal of research in medical sciences: J Res Med Sci 21:47PubMedPubMedCentralCrossRefGoogle Scholar
  36. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135PubMedCrossRefGoogle Scholar
  37. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057PubMedCrossRefPubMedCentralGoogle Scholar
  38. Mohan S, Gupta D (2018) Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 108:1866–1878PubMedCrossRefGoogle Scholar
  39. Morrison D, Ulevitch R (1978) The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol 93:526–618PubMedPubMedCentralGoogle Scholar
  40. Nomura Y, Fukui C, Morishita Y, Haishima Y (2018) A biological study establishing the endotoxin limit for osteoblast and adipocyte differentiation of human mesenchymal stem cells. Regen Ther 8:46–57PubMedPubMedCentralCrossRefGoogle Scholar
  41. Noreen M, Arshad M (2015) Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res 62:234–252PubMedCrossRefGoogle Scholar
  42. Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T (2015) Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520:702–705PubMedCrossRefGoogle Scholar
  43. Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H (2017) Recognition of viral RNA by pattern recognition receptors in the induction of innate immunity and excessive inflammation during respiratory viral infections. Viral Immunol 30:408–420PubMedCrossRefGoogle Scholar
  44. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281PubMedPubMedCentralCrossRefGoogle Scholar
  45. Pahwa R, Devaraj S, Jialal I (2016) The effect of the accessory proteins, soluble CD14 and lipopolysaccharide-binding protein on Toll-like receptor 4 activity in human monocytes and adipocytes. Int J Obes 40:907–911CrossRefGoogle Scholar
  46. Pandey S, Kawai T, Akira S (2015) Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 7:a016246PubMedCentralCrossRefPubMedGoogle Scholar
  47. Patry C, Remmé C, Betzen C, Tönshoff B, Yard BA, Beck G, Rafat N (2018a) VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients. PLoS One 13:e0195064PubMedPubMedCentralCrossRefGoogle Scholar
  48. Patry C, Stamm D, Betzen C, Tönshoff B, Yard BA, Beck GC, Rafat N (2018b) CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. J Inflamm (Lond) 15:10CrossRefGoogle Scholar
  49. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K (2015) Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 72:557–581PubMedCrossRefPubMedCentralGoogle Scholar
  50. Salazar N, Zabel BA (2019) Support of tumor endothelial cells by chemokine receptors. Front Immunol 10:147PubMedPubMedCentralCrossRefGoogle Scholar
  51. Selvaraj V, Nepal N, Rogers S, Manne ND, Arvapalli R, Rice KM, Asano S, Fankhanel E, Ma JJ, Shokuhfar T (2015) Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials. 59:160–171PubMedPubMedCentralCrossRefGoogle Scholar
  52. Siavashi V, Asadian S, Taheri-Asl M, Keshavarz S, Zamani-Ahmadmahmudi M, Nassiri SM (2017) Endothelial progenitor cell mobilization in preterm infants with sepsis is associated with improved survival. J Cell Biochem 118:3299–3307PubMedCrossRefGoogle Scholar
  53. Soares J-B, Pimentel-Nunes P, Roncon-Albuquerque R, Leite-Moreira A (2010) The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol Int 4:659–672PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sperandeo P, Martorana AM, Polissi A (2017) Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1451–1460PubMedCrossRefGoogle Scholar
  55. Stefanou C, Karatzanos E, Mitsiou G, Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E, Routsi C, Nanas S (2016) Neuromuscular electrical stimulation acutely mobilizes endothelial progenitor cells in critically ill patients with sepsis. Ann Intensive Care 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  56. Stowe I, Lee B, Kayagaki N (2015) Caspase-11: arming the guards against bacterial infection. Immunol Rev 265:75–84PubMedCrossRefGoogle Scholar
  57. Strassheim D, Park JS, Abraham E (2002) Sepsis: current concepts in intracellular signaling. Int J Biochem Cell Biol 34:1527–1533PubMedCrossRefGoogle Scholar
  58. Sueyama Y, Kaneko T, Ito T, Okiji T (2018) Effect of lipopolysaccharide stimulation on stem cell-associated marker-expressing cells. Int Endod J Suppl 2:e107–e114CrossRefGoogle Scholar
  59. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9PubMedCrossRefGoogle Scholar
  60. Ulrich H, Do Nascimento IC, Bocsi J, Tárnok A (2015) Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Rev 11:474–486CrossRefGoogle Scholar
  61. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353PubMedCrossRefPubMedCentralGoogle Scholar
  62. Varney ME, Melgar K, Niederkorn M, Smith M, Barreyro L, Starczynowski DT (2015) Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol 43:587–598PubMedPubMedCentralCrossRefGoogle Scholar
  63. Weinstock A, Pevsner-Fischer M, Porat Z, Selitrennik M, Zipori D (2015) Cultured mesenchymal stem cells stimulate an immune response by providing immune cells with Toll-like receptor 2 ligand. Stem Cell Rev 11:826–840CrossRefGoogle Scholar
  64. Xu J, Benabou K, Cui X, Madia M, Tzeng E, Billiar T, Watkins S, Sachdev U (2015) TLR4 deters perfusion recovery and upregulates toll-like receptor 2 (TLR2) in ischemic skeletal muscle and endothelial cells. Mol Med 21:605–615PubMedPubMedCentralCrossRefGoogle Scholar
  65. Yu M, Wang C, Zeng G, Zhou L, Chen T, Tan X, Wang Y (2017) Toll-like receptor 4 is expressed and functional in late endothelial progenitor cells. Mol Med Rep 16:5549–5554PubMedCrossRefGoogle Scholar
  66. Zhang Z, Li W, Sun D, Zhao L, Zhang R, Wang Y, Zhou X, Wang H, Cao F (2011) Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation. Inflamm Res 60:37–45PubMedCrossRefGoogle Scholar
  67. Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE (2015) Co-transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration. Clin Implant Dent Relat Res 17:353–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  2. 2.Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Clinical Biochemistry and Laboratory MedicineTabriz University of Medical SciencesTabrizIran
  4. 4.Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
  5. 5.Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran

Personalised recommendations