Advertisement

siRNA-mediated knockdown of sperm-associated antigen 11a (Spag11a) mRNA in epididymal primary epithelial cells affects proliferation: a transcriptome analyses

  • Kumari Sangeeta
  • Suresh YenuguEmail author
Regular Article

Abstract

Differential expression of a variety of proteins in the four major regions of the epididymis contributes to maturation of spermatozoa and region-specific cellular functions as well. Proliferation of epithelial cells of the epididymis is highly controlled and thus is one of the major reasons for the nonoccurrence of cancers in this organ system. The molecular mechanisms and the contribution of region-specific genes in epithelial cell proliferation are not yet fully understood. In this study, for the first time, we analyzed the role of sperm-associated antigen 11a (Spag11a), a caput-specific beta-defensin–like antimicrobial gene in governing epididymal cell proliferation and global gene expression. siRNA-mediated knockdown of Spag11a mRNA in epididymal primary epithelial cells resulted in increased cell proliferation. Out of the 68,842 genes analyzed, 4182 genes were differentially expressed (2154 upregulated and 2028 downregulated). A variety of genes that participate in different cellular processes and pathways were differentially regulated. Genes that are important for epithelial cell proliferation were found to be differentially regulated and these changes were confirmed by real-time PCR. Overexpression of Spag11a in immortalized rat caput epididymal cells resulted in decreased proliferation capacity. Results of this study indicate that Spag11a plays a crucial role in governing epididymal epithelial cell proliferation.

Keywords

Epididymis Cell proliferation siRNA Transcriptome Sperm-associted antigen 11A 

Notes

Acknowledgments

We thank the facilities extended by UGC-SAP, UGC-CAS, DBT-CREBB, DST-PURSE, UGC-UPE-II, and FIST programs at School of Life Sciences, University of Hyderabad. Kumari Sangeeta received the RGNF junior research fellowship from Government of India.

Funding information

The study was funded by a research grant (EMR/2016/000791) of the Science and Engineering Research Board, Government of India is acknowledged. KS received a RGNF research fellowship from Government of India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal ethics approval

All procedures involving animals were conducted using the guidelines for the care and use of laboratory animals to minimize suffering, and this study was specifically approved by the Institutional Animal Ethics Committee of University of Hyderabad (IAEC/UH/2017/01/SY/P13).

Supplementary material

441_2019_3107_MOESM1_ESM.xlsx (122 kb)
ESM 1 (XLSX 22 kb)
441_2019_3107_MOESM2_ESM.xlsx (22 kb)
ESM 2 (XLSX 409 kb)
441_2019_3107_MOESM3_ESM.docx (115 kb)
ESM 3 (DOCX 28 kb)
441_2019_3107_MOESM4_ESM.xlsx (410 kb)
ESM 4 (XLSX 17 kb)
441_2019_3107_MOESM5_ESM.xlsx (17 kb)
ESM 5 (XLSX 122 kb)

References

  1. Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564CrossRefGoogle Scholar
  2. Belleannee C, Calvo E, Thimon V, Cyr DG, Legare C, Garneau L, Sullivan R (2012a) Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One 7:e34996CrossRefPubMedPubMedCentralGoogle Scholar
  3. Belleannee C, Thimon V, Sullivan R (2012b) Region-specific gene expression in the epididymis. Cell Tissue Res 349:717–731CrossRefGoogle Scholar
  4. Bischof JM, Gillen AE, Song L, Gosalia N, London D, Furey TS, Crawford GE, Harris A (2013) A genome-wide analysis of open chromatin in human epididymis epithelial cells reveals candidate regulatory elements for genes coordinating epididymal function. Biol Reprod 89:104CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bjorkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipila P (2016) Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 427:143–154CrossRefGoogle Scholar
  6. Browne JA, Yang R, Song L, Crawford GE, Leir SH, Harris A (2014) Open chromatin mapping identifies transcriptional networks regulating human epididymis epithelial function. Mol Hum Reprod 20:1198–1207CrossRefPubMedPubMedCentralGoogle Scholar
  7. Browne JA, Yang R, Eggener SE, Leir SH, Harris A (2016a) HNF1 regulates critical processes in the human epididymis epithelium. Mol Cell Endocrinol 425:94–102CrossRefPubMedPubMedCentralGoogle Scholar
  8. Browne JA, Yang R, Leir SH, Eggener SE, Harris A (2016b) Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod 22:69–82CrossRefGoogle Scholar
  9. Bullard RS, Gibson W, Bose SK, Belgrave JK, Eaddy AC, Wright CJ, Hazen-Martin DJ, Lage JM, Keane TE, Ganz TA, Donald CD (2008) Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer. Mol Immunol 45:839–848CrossRefGoogle Scholar
  10. Carvajal G, Brukman NG, Weigel Munoz M, Battistone MA, Guazzone VA, Ikawa M, Haruhiko M, Lustig L, Breton S, Cuasnicu PS (2018) Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep 8:17531CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen YC, Bunick D, Bahr JM, Klinefelter GR, Hess RA (1998) Isolation and culture of epithelial cells from rat ductuli efferentes and initial segment epididymidis. Tissue Cell 30:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen P, Yang Q, Li X, Qin Y (2017) Potential association between elevated serum human epididymis protein 4 and renal fibrosis: a systemic review and meta-analysis. Medicine (Baltimore) 96:e7824CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chu C, Zheng G, Hu S, Zhang J, Xie S, Ma W, Ni M, Tang C, Zhou L, Zhou Y, Liu M, Li Y, Zhang Y (2015) Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats. PLoS One 10:e0124450CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dacheux JL, Belleannee C, Jones R, Labas V, Belghazi M, Guyonnet B, Druart X, Gatti JL, Dacheux F (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306:45–50CrossRefGoogle Scholar
  15. Droin N, Hendra JB, Ducoroy P, Solary E (2009) Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 72:918–927CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferraro S, Panteghini M (2018) Making new biomarkers a reality: the case of serum human epididymis protein 4. Clin Chem Lab MedGoogle Scholar
  17. Frohlich O, Po C, Murphy T, Young LG (2000) Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2. J Androl 21:421–430PubMedGoogle Scholar
  18. Gao C, Yue W, Tian H, Lin L, Li S, Si L (2016) Human beta-defensin 2 promotes the proliferation of lung cancer cells through ATP-binding cassette transporter G2. Int J Clin Exp Pathol 9:5944–5949Google Scholar
  19. Han Q, Wang R, Sun C, Jin X, Liu D, Zhao X, Wang L, Ji N, Li J, Zhou Y, Ye L, Liang X, Jiang L, Liao G, Dan H, Zeng X, Chen Q (2014) Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS One 9:e91867CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hanaoka Y, Yamaguchi Y, Yamamoto H, Ishii M, Nagase T, Kurihara H, Akishita M, Ouchi Y (2016) In vitro and in vivo anticancer activity of human beta-defensin-3 and its mouse homolog. Anticancer Res 36:5999–6004CrossRefGoogle Scholar
  21. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  22. Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 73:404–413CrossRefPubMedPubMedCentralGoogle Scholar
  23. Juma AR, Grommen SVH, O’Bryan MK, O’Connor AE, Merriner DJ, Hall NE, Doyle SR, Damdimopoulou PE, Barriga D, Hart AH, Van de Ven WJM, De Groef B (2017) PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Sci Rep 7:5317CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kierszenbaum AL, Lea O, Petrusz P, French FS, Tres LL (1981) Isolation, culture, and immunocytochemical characterization of epididymal epithelial cells from pubertal and adult rats. Proc Natl Acad Sci U S A 78:1675–1679CrossRefPubMedPubMedCentralGoogle Scholar
  25. Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, Huhtaniemi I (2011) Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 152:689–696CrossRefGoogle Scholar
  26. Li P, Chan HC, He B, So SC, Chung YW, Shang Q, Zhang YD, Zhang YL (2001) An antimicrobial peptide gene found in the male reproductive system of rats. Science 291:1783–1785CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li Y, Wang HY, Wan FC, Liu FJ, Liu J, Zhang N, Jin SH, Li JY (2012) Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene 497:330–335CrossRefGoogle Scholar
  28. Li J, Wang X, Qu W, Wang J, Jiang SW (2019) Comparison of serum human epididymis protein 4 and CA125 on endometrial cancer detection: a meta-analysis. Clin Chim Acta 488:215–220CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, Liu A, Zhang J, Zhang Y (2012) MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem 287:10189–10199CrossRefGoogle Scholar
  30. Meng X, Yang S, Zhang Y, Wang X, Goodfellow RX, Jia Y, Thiel KW, Reyes HD, Yang B, Leslie KK (2015) Genetic deficiency of Mtdh gene in mice causes male infertility via impaired spermatogenesis and alterations in the expression of small non-coding RNAs. J Biol Chem 290:11853–11864CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mi D, Zhang Y (2018) Diagnostic and prognostic value of HE4 in female patients with primary peritoneal carcinoma. Int J Biol Markers 1724600818796595Google Scholar
  32. Mo D, He F (2018) Serum human epididymis secretory protein 4 (HE4) is a potential prognostic biomarker in non-small cell lung cancer. Clin Lab 64:1421–1428CrossRefGoogle Scholar
  33. Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Dun MD, Tyagi S, Holt JE, McLaughlin EA (2015) Next generation sequencing analysis reveals segmental patterns of microRNA expression in mouse epididymal epithelial cells. PLoS One 10:e0135605CrossRefPubMedPubMedCentralGoogle Scholar
  34. Osterhoff C, Kirchhoff C, Krull N, Ivell R (1994) Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis. Biol Reprod 50:516–525CrossRefGoogle Scholar
  35. Ribeiro CM, Silva EJ, Hinton BT, Avellar MC (2016) Beta-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian J Androl 18:323–328CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rodriguez CM, Kirby JL, Hinton BT (2001) From molecules to clinical practice. In: Robaire B, Hinton BT (eds) The epididymis. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  37. Sangeeta K, Yenugu S (2019) Characterization of isolated rat caput epididymal primary epithelial cells: a molecular biology approach. Theriogenology 135:13–18CrossRefGoogle Scholar
  38. Sipila P, Bjorkgren I (2016) Segment-specific regulation of epididymal gene expression. Reproduction 152:R91–R99CrossRefGoogle Scholar
  39. Uraki S, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Nojiri K, Yoneda M, Yamamoto N, Takei Y, Nobori T, Ito M (2014) Human beta-defensin-3 inhibits migration of colon cancer cells via downregulation of metastasis-associated 1 family, member 2 expression. Int J Oncol 45:1059–1064CrossRefGoogle Scholar
  40. Wang L, Yuan Q, Chen S, Cai H, Lu M, Liu Y, Xu C (2012) Antimicrobial activity and molecular mechanism of the CRES protein. PLoS One 7:e48368CrossRefPubMedPubMedCentralGoogle Scholar
  41. White MG, Huang YS, Tres LL, Kierszenbaum AL (1982) Structural and functional aspects of cultured epididymal epithelial cells isolated from pubertal rats. J Reprod Fertil 66:475–484CrossRefGoogle Scholar
  42. Xu B, Yang L, Lye RJ, Hinton BT (2010) p-MAPK1/3 and DUSP6 regulate epididymal cell proliferation and survival in a region-specific manner in mice. Biol Reprod 83:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xu D, Zhang B, Liao C, Zhang W, Wang W, Chang Y, Shao Y (2016) Human beta-defensin 3 contributes to the carcinogenesis of cervical cancer via activation of NF-kappaB signaling. Oncotarget 7:75902–75913PubMedPubMedCentralGoogle Scholar
  44. Yang R, Browne JA, Eggener SE, Leir SH, Harris A (2018) A novel transcriptional network for the androgen receptor in human epididymis epithelial cells. Mol Hum Reprod 24:433–443CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yenugu S, Hamil KG, French FS, Hall SH (2004) Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod Biol Endocrinol 2:61CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yenugu S, Hamil KG, Grossman G, Petrusz P, French FS, Hall SH (2006) Identification, cloning and functional characterization of novel Spag11 isoforms in the rat. Reprod Biol Endocrinol 4:1–14CrossRefGoogle Scholar
  47. Yeung CH, Wang K, Cooper TG (2012) Why are epididymal tumours so rare? Asian J Androl 14:465–475CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yuan T, Li Y (2017) Human epididymis protein 4 as a potential biomarker of chronic kidney disease in female patients with normal ovarian function. Lab Med 48:238–243CrossRefGoogle Scholar
  49. Zhang C, Zhou Y, Xie S, Yin Q, Tang C, Ni Z, Fei J, Zhang Y (2018) CRISPR/Cas9-mediated genome editing reveals the synergistic effects of beta-defensin family members on sperm maturation in rat epididymis. FASEB J 32:1354–1363CrossRefGoogle Scholar
  50. Zhu L, Guo Q, Jin S, Feng H, Zhuang H, Liu C, Tan M, Liu J, Li X, Lin B (2016a) Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep 36:1592–1604CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhu L, Zhuang H, Wang H, Tan M, Schwab CL, Deng L, Gao J, Hao Y, Li X, Gao S, Liu J, Lin B (2016b) Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget 7:729–744PubMedGoogle Scholar
  52. Zhuravel OV, Gerashchenko OL, Khetsuriani MR, Soldatkina MA, Pogrebnoy PV (2014) Expression of human beta-defensins-1-4 in thyroid cancer cells and new insight on biologic activity of hBD-2 in vitro. Exp Oncol 36:174–178PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal BiologyUniversity of HyderabadHyderabadIndia

Personalised recommendations