Advertisement

Cell and Tissue Research

, Volume 377, Issue 3, pp 527–547 | Cite as

Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages

  • V. HartensteinEmail author
  • P. Martinez
Review

Abstract

The uptake of macromolecules and larger energy-rich particles into the cell is known as phagocytosis. Phagocytosed material is enzymatically degraded in membrane-bound vesicles of the endosome/lysosome system (intracellular digestion). Whereas most, if not all, cells of the animal body are equipped with the molecular apparatus for phagocytosis and intracellular digestion, a few cell types are specialized for a highly efficient mode of phagocytosis. These are the (“professional”) macrophages, motile cells that seek out and eliminate pathogenic invaders or damaged cells. Macrophages form the backbone of the innate immune system. Developmentally, they derive from specialized compartments within the embryonic mesoderm and early vasculature as part of the process of hematopoiesis. Intensive research has revealed in detail molecular and cellular mechanisms of phagocytosis and intracellular digestion in macrophages. In contrast, little is known about a second type of cell that is “professionally” involved in phagocytosis, namely the “enteric phagocyte.” Next to secretory (zymogenic) cells, enteric phagocytes form one of the two major cell types of the intestine of most invertebrate animals. Unlike vertebrates, these invertebrates only partially digest food material in the intestinal lumen. The resulting food particles are absorbed by phagocytosis or pinocytosis and digested intracellularly. In this review, we provide a brief overview of the enteric phagocytes described electron microscopically for diverse invertebrate clades, to then to compare these cells with the “canonical” phagocyte ultrastructure established for macrophages. In addition, we will review observations and speculations associated with the hypothesis that macrophages are evolutionarily derived from enteric phagocytes. This idea was already proposed in the late nineteenth century by Elias Metschnikoff who pioneered the research of phagocytosis for both macrophages and enteric phagocytes. We presume that modern approaches to better understand phagocytosis will be helped by considering the deep evolutionary relationship between the two cell types.

Keywords

Enteric phagocyte Macrophage Phagocytosis Intracellular digestion; evolution; ultrastructure 

Notes

Funding information

NIH R01 NS054814

Compliance with ethical statements

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

N/A

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abnave P, Muracciole X, Ghigo E (2017) Macrophages in invertebrates: from insects and crustaceans to marine bivalves. Results Probl Cell Differ 62:147–158.  https://doi.org/10.1007/978-3-319-54090-0_6 Google Scholar
  2. Afzelius BA, Rosén B (1965) Nutritive phagocytosis in animal cells. An electron microscopical study of the gastroderm of the hydroid Clava squamata Müll. Z Zellforsch Mikrosk Anat 67:24–33Google Scholar
  3. Al-Mohanna SY, Nott JA (1987) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137.  https://doi.org/10.1007/BF00447494 Google Scholar
  4. Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Mar Biol 101:535–544.  https://doi.org/10.1007/BF00541656 Google Scholar
  5. Antoniazzi MM, Silveira M (1996) Studies on Stenostomum grandeChild, 1902 (Platyhelminthes, Catenulida): fine structure of the digestive tract and the endocytotic activity of the gastrodermis. Acta Zool 77:25–32.  https://doi.org/10.1111/j.1463-6395.1996.tb01250.x Google Scholar
  6. Aran D, Looney AP, Liu L et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172.  https://doi.org/10.1038/s41590-018-0276-y Google Scholar
  7. Arendt D, Bertucci PY, Achim K, Musser JM (2019) Evolution of neuronal types and families. Curr Opin Neurobiol 56:144–152Google Scholar
  8. Arnaud J, Brunet M, Mazza J (1978) Studies on the midgut of Centropages typicus (copepod, calanoid). I. Structural and ultrastructural data. Cell Tissue Res 187:333–353Google Scholar
  9. Arnaud J, Brunet M, Casanova J-P et al (1996) Morphology and ultrastructure of the gut in Spadella cephaloptera (chaetognatha). J Morphol 228:27–44.  https://doi.org/10.1002/(SICI)1097-4687(199604)228:1<27::AID-JMOR3>3.0.CO;2-M Google Scholar
  10. Benito J, Pardos F (1997) Hemichordata. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 15. John Wiley and Sons, New York, pp 15–101Google Scholar
  11. Bignell DE, Oskarsson H, Anderson JM (1982) Formation of membrane-bounded secretory granules in the midgut epithelium of a termite, Cubitermes severus, and a possible intercellular route of discharge. Cell Tissue Res.  https://doi.org/10.1007/BF00218299
  12. Biserova NM, Mustafina AR (2015) Comparative midgut ultrastructure in three species of Tardigrada. Arthropoda Selecta 24:373–385Google Scholar
  13. Bloomfield G, Kay RR (2016) Uses and abuses of macropinocytosis. J Cell Sci 129:2697–2705.  https://doi.org/10.1242/jcs.176149 Google Scholar
  14. Bonifacino JS, Neefjes J (2017) Moving and positioning the endolysosomal system. Curr Opin Cell Biol 47:1–8.  https://doi.org/10.1016/j.ceb.2017.01.008 Google Scholar
  15. Boucaud-Camou E, Yim M (2009) Fine structure and function of the digestive cell of Sepia officinalis (Mollusca: Cephalopoda). J Zool 191:89–105.  https://doi.org/10.1111/j.1469-7998.1980.tb01451.x Google Scholar
  16. Boury-Esnault N, De Vos L, Donadey C, Vacelet J (1984) Comparative study of the choanosome of Porifera: 1. The Homoscleromorpha. J Morphol 180:3–17.  https://doi.org/10.1002/jmor.1051800103 Google Scholar
  17. Bowen ID, Ryder TA, Thompson JA (1974) The fine structure of the planarian Polycelis tenuis Iijima. II. The intestine and gastrodermal phagocytosis. Protoplasma 79:1–17Google Scholar
  18. Broderick NA (2015) A common origin for immunity and digestion. Front Immunol 6:72.  https://doi.org/10.3389/fimmu.2015.00072 Google Scholar
  19. Brusca R, Moore W, Shuster SM, Haver N (2016) Invertebrates. Oxford University Press, OxfordGoogle Scholar
  20. Buchmeier NA, Heffron F (1991) Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect Immun 59:2232–2238Google Scholar
  21. Buckley KM, Rast JP (2017) An organismal model for gene regulatory networks in the gut-associated immune response. Front Immunol 8:1297.  https://doi.org/10.3389/fimmu.2017.01297 Google Scholar
  22. Buckley KM, Rast JP (2019) Immune activity at the gut epithelium in the larval sea urchin. Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03095-7
  23. Burighel P, Cloney RA (1997) Urochordata: Ascidiacea. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 15. John Wiley and Sons, New York, pp 221–347Google Scholar
  24. Burighel P, Milanesi C (1973) Fine structure of the gastric epithelium of the ascidian Botryllus schlosseri. Vacuolated and zymogenic cells. Z Zellforsch Mikrosk Anat 145:541–555Google Scholar
  25. Burighel P, Milanesi C (1975) Fine structure of the gastric epithelium of the ascidian Botryllus schlosseri. Mucous, endocrine and plicated cells. Cell Tissue Res 158:481–496Google Scholar
  26. Byrne M (1994) Ophiuroidea. In: Harison FW, Chia F-S (eds) Microscopic anatomy of invertebrates, vol 14. John Wiley and Sons, New York, pp 247–343Google Scholar
  27. Caccia S, Casartelli M, Tettamanti G (2019) The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03076-w
  28. Chapman DM (1978) Microanatomy of the cubopolyp,Tripedalia cystophora (Class Cubozoa). Helgoländer Meeresun 31:128–168.  https://doi.org/10.1007/BF02296994 Google Scholar
  29. Chia FS, Koss R (1991) Asteroidea. In: Harrison FW, Chia TS (eds) Microscopic anatomy of invertebrates, vol 14. John Wiley and Sons, New York, pp 169–246Google Scholar
  30. Clément P, Wurdak ES (1991) Rotifera. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. John Wiley and Sons, New York, pp 219–297Google Scholar
  31. Clokey GV, Jacobson LA (1986) The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 35:79–94.  https://doi.org/10.1016/0047-6374(86)90068-0 Google Scholar
  32. Collombet S, van Oevelen C, Sardina Ortega JL et al (2017) Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 114:5792–5799.  https://doi.org/10.1073/pnas.1610622114 Google Scholar
  33. Coons LB, Alberti G (1999) Acari: Ticks. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 8b. John Wiley and Sons, New York, pp 267–514Google Scholar
  34. Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78.  https://doi.org/10.1016/j.plrev.2009.12.001 Google Scholar
  35. Dales RP, Dixon LRJ (1981) Polychaetes. In: Ratcliffe NA, Rowley AF (eds) Invertebrate Blood Cells, vol 1. Academic Press, Cambridge, pp 35–75Google Scholar
  36. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800.  https://doi.org/10.1126/science.1113832 Google Scholar
  37. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492.  https://doi.org/10.1146/annurev.ph.28.030166.002251 Google Scholar
  38. De Duve C, Pressman BC, Gianetto R et al (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617Google Scholar
  39. De Priester W (1971) Ultrastructure of the midgut epithelial cells in the fly Calliphora erythrocephala. J Ultrastruct Res 36:783–805Google Scholar
  40. Del Conte E (1979) Ultrastructural aspects of degradation and necrosis of Leydig cells in lizards by effect of metyrapone. Gen Comp Endocrinol 37:101–110Google Scholar
  41. Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice EM (eds) Microscopic anatomy of invertebrates, vol12. John Wiley and Sons, New York, pp 143–183Google Scholar
  42. Dilly PN, Welsch U, Rehkämper G (1986) On the fine structure of the alimentary tract of Cephalodiscus gracilis (Pterobranchia, Hemichordata). Acta Zool 67:87–95.  https://doi.org/10.1111/j.1463-6395.1986.tb00852.x Google Scholar
  43. Doe DA (1981) Comparative ultrastructure of the pharynx simplex in turbellaria. Zoomorphology 97:133–193.  https://doi.org/10.1007/BF00310107 Google Scholar
  44. Eckelbarger KJ (1976) Origin and development of the amoebocytes of Nicolea zostericola (Polychaeta: Terebellidae) with a discussion of their possible role in oogenesis. Mar Biol 36:169–182.  https://doi.org/10.1007/BF00388440 Google Scholar
  45. Essner E, Haimes H (1977) Ultrastructural study of GERL in beige mouse alveolar macrophages. J Cell Biol 75:381–387Google Scholar
  46. Fankboner PV (2001) Digestive system of invertebrates. John Wiley & Sons, Ltd, ChichesterGoogle Scholar
  47. Fedorko ME, Hirsch JG, Cohn ZA (1968) Autophagic vacuoles produced in vitro. I. Studies on cultured macrophages exposed to chloroquine. J Cell Biol 38:377–391Google Scholar
  48. Fernandez J, Tellez V, Olea N (1992) Hirudinea. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates, vol 7. John Wiley and Sons, New York, pp 323–394Google Scholar
  49. Filimonova SA (2008) The fine structure of the midgut in the mite Anystis baccarum (L.) (Acari, Actinedida: Anystidae). Arthropod Struct Dev 37:299–309.  https://doi.org/10.1016/j.asd.2007.11.005 Google Scholar
  50. Filimonova SA (2013) Morphological aspects of blood digestion in a parasitic mite Bakericheyla chanayi. Arthropod Struct Dev 42:265–276.  https://doi.org/10.1016/j.asd.2013.02.006 Google Scholar
  51. Fincher CT, Wurtzel O, de Hoog T et al (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360:eaaq1736.  https://doi.org/10.1126/science.aaq1736 Google Scholar
  52. Fitt WK, Trench RK (1983) Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. J Cell Sci 64:195–212Google Scholar
  53. Franc JM (1972) Activity and ultrastructure of the ctenophore cell rosettes. Z Zellforsch Mikrosk Anat 130:527–544Google Scholar
  54. Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zool Sci 22:1113–1122Google Scholar
  55. Garcia-Corrales P, Gamo J (1988) Ultrastructural changes in the gastrodermal phagocytic cells of the planarian Dugesia gonocephala s.l. during food digestion (Plathelminthes). Zoomorphology 108:109–117.  https://doi.org/10.1007/BF00539786 Google Scholar
  56. Gavilán B, Sprecher SG, Hartenstein V, Martinez P (2019) The digestive system of xenacoelomorphs. Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03038-2
  57. Gawantka V, Pollet N, Delius H et al (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev 77:95–141Google Scholar
  58. Giribet G, Edgecombe GD (2017) Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr Comp Biol 57:455–466.  https://doi.org/10.1093/icb/icx072 Google Scholar
  59. Gonobobleva E, Maldonado M (2009) Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). J Morphol 270:615–627.  https://doi.org/10.1002/jmor.10709 Google Scholar
  60. Goyffon M, Martoja R (1983) Cytophysiological aspects of digestion and storage in the liver of a scorpion, Androctonus australis (Arachnida). Cell Tissue Res 228:661–675.  https://doi.org/10.1007/BF00211482 Google Scholar
  61. Grapin-Botton A, Constam D (2007) Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 124:253–278Google Scholar
  62. Greven H (1976) Some ultrastructural observations on the midgut epithelium of Isohypsibius augusti (Murray, 1907) (Eutardigrada). Cell Tissue Res 166:339–351Google Scholar
  63. Grigorian M, Hartenstein V (2013) Hematopoiesis and hematopoietic organs in arthropods. Dev Genes Evol 223:103–115.  https://doi.org/10.1007/s00427-012-0428-2 Google Scholar
  64. Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 2011 12:4 5:317–323.  https://doi.org/10.1038/nrm1360 Google Scholar
  65. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8:311–330.  https://doi.org/10.1111/j.1600-0854.2006.00531.x Google Scholar
  66. Haffner K (1925) Untersuchungen über die Symbiose von Dalyellia viridis und Chlorohydra viridissima mit Chlorellen. Z Wiss Zool 126:1–69Google Scholar
  67. Hammersen F, Pokahr A (1972) Electron microscopic studies of epithelial structure of the gastrointestinal tract of Hirudo medicinalis L. I. Epithelium of the diverticulum. Z Zellforsch Mikrosk Anat 125:378–403Google Scholar
  68. Hard GC (1972) Examination by electron microscopy of the interaction between peritoneal phagocytes and Corynebacterium ovis. J Med Microbiol 5:483–491.  https://doi.org/10.1099/00222615-5-4-483 Google Scholar
  69. Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712.  https://doi.org/10.1146/annurev.cellbio.22.010605.093317 Google Scholar
  70. Hartenstein V, Mandal L (2006) The blood/vascular system in a phylogenetic perspective. Bioessays 28:1203–1210.  https://doi.org/10.1002/bies.20497 Google Scholar
  71. He C, Han T, Liao X et al (2018) Phagocytic intracellular digestion in amphioxus (Branchiostoma). Proc Biol Sci 285:20180438.  https://doi.org/10.1098/rspb.2018.0438 Google Scholar
  72. Hendriks HR, Eestermans IL (1986) Phagocytosis and lipofuscin accumulation in lymph node macrophages. Mech Ageing Dev 35:161–167Google Scholar
  73. Hernandez-Nicaise ML (1991) Ctenophora. In: Harrison FW, Westfall JA (eds) Microscopic anatomy of invertebrates, vol 2. John Wiley and Sons, New York, pp 359–418Google Scholar
  74. Herold RC, Meadow ND (1970) Age-related changes in ultrastructure and histochemistry of rotiferan organs. J Ultrastruct Res 33:203–218.  https://doi.org/10.1016/S0022-5320(70)90016-X Google Scholar
  75. Herrmann K (1997) Phoronida. In: Harrison FW, Woollacott RM (eds) Microscopic Anatomy of Invertebrates, vol 13. John Wiley and Sons, New York, pp 207–235Google Scholar
  76. Hirsch GC (1925) Probleme der intraplasmatischen Verdauung. Ihre Beziehungen zur Resorption, Diffusion, Nahrungsaufnahme, Darmbau und Nahrungswahl bei den Metazoen. Zeitschrift für Vergleichende Physiologie 3:183–208.  https://doi.org/10.1007/BF00343742 Google Scholar
  77. Hoffmann JA, Zachary D, Hoffmann D, Brehelin M, Porte A (1979) Postembryonic development and differentiation: hemopoietic tissues and their functions in some insects. In: Gupta AP (ed) Insect Hemocytes. Cambridge University Press, Cambridge, pp 29–66Google Scholar
  78. Holt PA, Mettrick DF (1975) Ultrastructural studies of the epidermis and gastrodermis of Syndesmis franciscana(Turbellaria: Rhabdocoela). Can J Zool 53:536–549.  https://doi.org/10.1139/z75-068 Google Scholar
  79. Holtof M, Lenaerts C, Cullen D, Van den Broeck J (2019) Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03031-9
  80. Hooton D, Lentle R, Monro J et al (2015) The secretion and action of brush border enzymes in the mammalian small intestine. Rev Physiol Biochem Pharmacol 168:59–118.  https://doi.org/10.1007/112_2015_24 Google Scholar
  81. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500.  https://doi.org/10.1038/emboj.2011.286 Google Scholar
  82. Imsiecke G (1993) Ingestion, digestion, and egestion in Spongilla lacustris (Porifera, Spongillidae) after pulse feeding with Chlamydomonas reinhardtii (Volvocales). Zoomorphology 113:233–244.  https://doi.org/10.1007/BF00403314 Google Scholar
  83. Jahraus A, Tjelle TE, Berg T et al (1998) In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J Biol Chem 273:30379–30390Google Scholar
  84. Jangoux M (1972) The fine structure of the rectal caeca of two Asteriidae: Marthasterias glacialis (L) and Coscinasterias tenuispina (Lam) (echinodermata asteroidea). Z Zellforsch Mikrosk Anat 128:366–384Google Scholar
  85. Jennings JB (1957) Studies on feeding, digestion, and food storage in free-living flatworms (Platyhelminthes: Turbellaria). Biol Bull 112:63–80.  https://doi.org/10.2307/1538879 Google Scholar
  86. Jennings JB (1969) Ultrastructural observations on the phagocytic uptake of food materials by the ciliated cells of the rhynchocoelan intestine. Biol Bull 137:476–485.  https://doi.org/10.2307/1540169 Google Scholar
  87. Kajihara H, Totović V, Gedigk P (1975) Ultrastructure and morphogenesis of ceroid pigment. I. Phagocytosis and formation of lipid-containing lysosomes in Kupffer cells after intravenous injection of unsaturated lipids (author’s transl). Virchows Arch B Cell Pathol 19:221–237Google Scholar
  88. Kermack DM (1955) The anatomy and physiology of the gut of the polychaete Arenicola marina (L.). Proc Zool Soc Lond 125:347–381Google Scholar
  89. Kerr JFR (1970) Liver cell defaecation: an electron-microscope study of the discharge of lysosomal residual bodies into the intercellular space. J Pathol 100:99–103.  https://doi.org/10.1002/path.1711000204 Google Scholar
  90. Kerr MC, Teasdale RD (2009) Defining macropinocytosis. Traffic 10:364–371.  https://doi.org/10.1111/j.1600-0854.2009.00878.x Google Scholar
  91. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 2011 12:4 9:781–795.  https://doi.org/10.1038/nrm2515 Google Scholar
  92. Kindred JE (1924) The cellular elements in the perivisceral fluid of echinoderms. Biol Bull 46:228–251Google Scholar
  93. Kocot KM, Struck TH, Merkel J et al (2017) Phylogenomics of Lophotrochozoa with consideration of systematic error. Syst Biol 66:256–282.  https://doi.org/10.1093/sysbio/syw079 Google Scholar
  94. Kristensen RM, Higgins RP (1991) Kinorhyncha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. John Wiley and Sons, New York, pp 377–404Google Scholar
  95. Lee CC (1969) Ancylostoma caninum: fine structure of intestinal epithelium. Exp Parasitol 24:336–347Google Scholar
  96. Leys SP, Eerkes-Medrano DI (2006) Feeding in a calcareous sponge: particle uptake by pseudopodia. Biol Bull 211:157–171.  https://doi.org/10.2307/4134590 Google Scholar
  97. Liang C, Musser JM, Cloutier A, Prum RO, Wagner GP (2018) Pervasive correlated evolution in gene expression shapes cell and tissue type transcriptomes. Genome Biol Evol 10(2):538–552.  https://doi.org/10.1093/gbe/evy016 Google Scholar
  98. Lim C-Y, Zoncu R (2016) The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 214:653–664.  https://doi.org/10.1083/jcb.201607005 Google Scholar
  99. Lobo-da-Cunha A (2000) The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study. Tissue Cell 32:49–57.  https://doi.org/10.1054/tice.1999.0082 Google Scholar
  100. Lobo-da-Cunha A, Batista-Pinto C (2003) Stomach ofAplysia depilans (Mollusca, Opisthobranchia): a histochemical, ultrastructural, and cytochemical study. J Morphol 256:360–370.  https://doi.org/10.1002/jmor.10099 Google Scholar
  101. Lobo-da-Cunha A, Batista-Pinto C (2007) Ultrastructural, histochemical and cytochemical characterization of intestinal epithelial cells in Aplysia depilans (Gastropoda, Opisthobranchia). Acta Zool 88:211–221.  https://doi.org/10.1111/j.1463-6395.2007.00268.x Google Scholar
  102. Loizzi RF (1971) Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Cell Tissue Res 113:420–440.  https://doi.org/10.1007/BF00968548 Google Scholar
  103. Lunger PD (1963) Fine-structural aspects of digestion in a colonial hydroid. J Ultrastruct Res 9:362–380.  https://doi.org/10.1016/S0022-5320(63)80012-X Google Scholar
  104. Maduro MF, Dimov I (2019) The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03036-4
  105. Marsden JR (1963) The digestive tract of Hermodice carunculata (Pallas), Polychaeta: Amphinomidae. Can J Zool 41:165–183Google Scholar
  106. Marsden JR (1966) The coelomocytes of Hermodice carunculata (Polychaeta: Amphinomidae). Can J Zool 44:377–389Google Scholar
  107. Martinez A, Lopez J, Villaro AC, Sesma P (1991) Choanocyte-like cells in the digestive system of the starfish Marthasterias glacialis (Echinodermata). J Morphol 208:215–225.  https://doi.org/10.1002/jmor.1052080207 Google Scholar
  108. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612.  https://doi.org/10.1038/nrm2216 Google Scholar
  109. McGhee J (2007) The C. elegans intestine. In: WormBook.  https://doi.org/10.1895/wormbook.1.133.1 Google Scholar
  110. McGrath KE, Frame JM, Palis J (2015) Early hematopoiesis and macrophage development. Semin Immunol 27:379–387.  https://doi.org/10.1016/j.smim.2016.03.013 PMID: 27021646Google Scholar
  111. McNeil PL (1981) Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscope study. J Cell Sci 49:311–339Google Scholar
  112. Melo RCN, D'Avila H, Wan H-C et al (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556.  https://doi.org/10.1369/0022155411404073 Google Scholar
  113. Menzel LP, Tondo C, Stein B, Bigger CH (2015) Histology and ultrastructure of the coenenchyme of the octocoral Swiftia exserta, a model organism for innate immunity/graft rejection. Zoology 118:115–124.  https://doi.org/10.1016/j.zool.2014.09.002 Google Scholar
  114. Metschnikoff E (1878) Über die Verdauungsorgane einiger Süsswasserturbellarien. Zool Anz, Bd 1:387–390Google Scholar
  115. Metschnikoff E (1884) Memoirs: researches on the intracellular digestion of invertebrates. J Cell Sci 93:89–111Google Scholar
  116. Michel C, Bhaud M, Boumati P, Halpern S (1984) Physiology of the digestive tract of the sedentary polychaete Terebellides stroemi. Mar Biol 83:17–31.  https://doi.org/10.1007/BF00393082 Google Scholar
  117. Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210:357–396.  https://doi.org/10.1534/genetics.118.300224 Google Scholar
  118. Millot N (1937) On the morphology of the alimentary canal, process of feeding, and physiology of digestion of the nudibranch mollusc Jorunna tomentosa (Cuvier). Phil TransRoy Soc Lond Ser B 228:173–218Google Scholar
  119. Morita M, Best JB (1984) Electron microscopic studies of planarian regeneration. III. Degeneration and differentiation of muscles. J Exp Zool 229:413–424.  https://doi.org/10.1002/jez.1402290309 Google Scholar
  120. Moroz LL (2018) NeuroSystematics and periodic system of neurons: model vs reference species at single-cell resolution. ACS Chem Neurosci 9:1884–1903.  https://doi.org/10.1021/acschemneuro.8b00100 Google Scholar
  121. Mukai H, Terakado K, Reed CG (1997) Bryozoa. In: Harrison FW, Woolacott RM (eds) Microscopic anatomy of invertebrates, vol 13. John Wiley and Sons, New York, pp 45–206Google Scholar
  122. Munnell JF, Cork LC (1980) Exocytosis of residual bodies in a lysosomal storage disease. Am J Pathol 98:385–394Google Scholar
  123. Murphy D (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438.  https://doi.org/10.1016/S0163-7827(01)00013-3 Google Scholar
  124. Nakanishi N, Sogabe S, Degnan BM (2014) Evolutionary origin of gastrulation: insights from sponge development. BMC Biol 12:26.  https://doi.org/10.1186/1741-7007-12-26 Google Scholar
  125. Neuhaus B, Higgins RP (2002) Ultrastructure, biology, and phylogenetic relationships of kinorhyncha. Integr Comp Biol 42:619–632.  https://doi.org/10.1093/icb/42.3.619 Google Scholar
  126. Noventa S, Hacker C, Correia A et al (2018) Gold nanoparticles ingested by oyster larvae are internalized by cells through an alimentary endocytic pathway. Nanotoxicology 12:1–13.  https://doi.org/10.1080/17435390.2018.1487601 Google Scholar
  127. Novikoff AB (1973) Lysosomes: a personal account. In: Hers HG, van Hoof F (eds) Lysosomes and storage diseases. Academic Press Inc, N.Y, pp 1–41Google Scholar
  128. Owen G (1970) The fine structure of the digestive tubules of the marine bivalve Cardium edule. Philos Trans R Soc Lond Ser B Biol Sci 258:245–260.  https://doi.org/10.1098/rstb.1970.0035 Google Scholar
  129. Owen G (1972) Lysosomes, peroxisomes and bivalves. Sci Prog 60:299–318Google Scholar
  130. Pal SG (1972) The fine structure of the digestive tubules of Mya arenaria L. II. Digestive cell. Proc malac Soc Lond 40:161–170Google Scholar
  131. Pascolini R, Gargiulo AM (1975) Ultrastructural modifications of cells in the intestine of Dugesia Lugubris. Bolletino di zoologia 42:123–131.  https://doi.org/10.1080/11250007509431420 Google Scholar
  132. Pedersen KJR (1961) Studies on the nature of planarian connective tissue. Cell Tissue Res 53:569–608.  https://doi.org/10.1007/BF00339508 Google Scholar
  133. Perez Y, Casanova JP, Mazza J (2001) Degrees of vacuolation of the absorptive intestinal cells of five Sagitta (Chaetognatha) species: possible ecophysiological implications. Mar Biol 138:125–133.  https://doi.org/10.1007/s002270000438 Google Scholar
  134. Peterson KJ, Eernisse DJ (2016) The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. Org Divers Evol 16:401–418.  https://doi.org/10.1007/s13127-016-0270-x Google Scholar
  135. Philippe H, Poustka AJ, Chiodin M, Hoff KJ, Dessimoz C, Tomiczek B, Schiffer PH, Müller S, Domman D, Horn M, Kuhl H, Timmermann B, Satoh N, Hikosaka-Katayama T, Nakano H, Rowe ML, Elphick MR, Thomas-Chollier M, Hankeln T, Mertes F, Wallberg A, Copley RR, Martinez P, Telford MJ (2019) Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. Curr Biol In pressGoogle Scholar
  136. Plass M, Solana J, Wolf FA et al (2018) Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360:eaaq1723.  https://doi.org/10.1126/science.aaq1723 Google Scholar
  137. Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson GT (2017) Cell Biology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  138. Repnik U, Česen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5:a008755–a008755.  https://doi.org/10.1101/cshperspect.a008755 Google Scholar
  139. Reuter M, Palmberg I (1987) An ultrastructural and Immunocytochemical study of gastrodermal cell types in Microstomum lineare (Turbellaria, Macrostomida). Acta Zool 68:153–163.  https://doi.org/10.1111/j.1463-6395.1987.tb00886.x Google Scholar
  140. Revel JP, Napolitano L, Fawcett DW (1960) Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol 8:575–589Google Scholar
  141. Richards AG, Richards PA (1977) The peritrophic membranes of insects. Annu Rev Entomol 22:219–240.  https://doi.org/10.1146/annurev.en.22.010177.001251 Google Scholar
  142. Rieger R (1991) Turbellaria. In: Harrison FW, Bogitsh J (eds) Microscopic anatomy of invertebrates, vol 2. John Wiley and Sons, New York, pp 1–140Google Scholar
  143. Riley J (1973) Histochemical and ultrastructural observations on digestion in Tetrameres fissispina Diesing, 1861 (Nematoda : Spiruridea) with special reference to intracellular digestion. Int J Parasitol 3:157–164.  https://doi.org/10.1016/0020-7519(73)90021-0 Google Scholar
  144. Rodaway A, Patient R (2001) Mesendoderm: an ancient germ layer? Cell 105:169–172Google Scholar
  145. Rougerie P, Miskolci V, Cox D (2013) Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239.  https://doi.org/10.1111/imr.12118 Google Scholar
  146. Ruppert EE (1991) Gastrotricha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. John Wiley and Sons, New York, pp 41–109Google Scholar
  147. Ruppert EE (1997) Cephalochordata (Acrania). In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 15. John Wiley and Sons, New York, pp 349–504Google Scholar
  148. Ruppert EE, Carle KJ (1983) Morphology of metazoan circulatory systems. Zoomorphology 103:193–208.  https://doi.org/10.1007/BF00310477 Google Scholar
  149. Saulnier-Michel C (1992) Polychaeta: digestive system. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates, vol 7. John Wiley and Sons, New York, pp 53–69Google Scholar
  150. Sebé-Pedrós A, Chomsky E, Pang K et al (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2:1176–1188.  https://doi.org/10.1038/s41559-018-0575-6 Google Scholar
  151. Shinn G (1997) Chaetognatha. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates, vol 15. John Wiley and Sons, New York, pp 103–220Google Scholar
  152. Slautterback DB (1967) Coated vesicles in absorptive cells of hydra. J Cell Sci 2:563–572Google Scholar
  153. Sogabe S, Nakanishi N, Degnan BM (2016) The ontogeny of choanocyte chambers during metamorphosis in the demosponge Amphimedon queenslandica. Evodevo 7:6.  https://doi.org/10.1186/s13227-016-0042-x Google Scholar
  154. Song J-H, Hanayama R (2016) Mechanisms of lysosomal exocytosis by immune cells. In: Chronic inflammation. Springer Japan, Tokyo, pp 369–378Google Scholar
  155. Steinmetz PRH, Aman A, Kraus JEM, Technau U (2017) Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat Ecol Evol 1:1535–1542.  https://doi.org/10.1038/s41559-017-0285-5 Google Scholar
  156. Steinmetz PRH (2019) A non-bilaterian perspective on the development and evolution of animal digestive systems Cell Tissue Res.  https://doi.org/10.1007/s00441-019-03075-x
  157. Storch V (1991) Priapulida. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. John Wiley and Sons, New York, pp 333–350Google Scholar
  158. Storch V, Ruhberg H (1993) Onychophora. In: Harrison FW, Rice EM (eds) Microscopic anatomy of invertebrates, vol 12. John Wiley and Sons, New York, pp 11–56Google Scholar
  159. Storch V, Higgins RP, Morse MP (1989) Internal anatomy of Meiopriapulus fijiensis (Priapulida). Trans Am Microsc Soc 108:245.  https://doi.org/10.2307/3226343 Google Scholar
  160. Straus W (1964) Occurrence of phagosomes and phago-lysosomes in different segments of the nephron in relation to the reabsorption, transport, digestion, and extrusion of intravenously injected horseradish-peroxidase. J Cell Biol 21:295–308.  https://doi.org/10.1083/jcb.21.3.295 Google Scholar
  161. Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 2011 12:4 4:897–901.  https://doi.org/10.1038/nrm1244 Google Scholar
  162. Teuchert G (1977) The ultrastructure of the marine gastrotrichTurbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetical importance. Zoomorphologie 88:189–246.  https://doi.org/10.1007/BF00995474 Google Scholar
  163. Thomas NW (1970) Morphology of the cell types from the gastric epithelium of Ciona intestinalis. J Mar Biol Ass UK 50:737–746Google Scholar
  164. Thorndyke MC (1977) Observations on the gastric epithelium of ascidians with special reference to Styela clava. Cell Tissue Res 184:539–550.  https://doi.org/10.1007/BF00220977 Google Scholar
  165. Tjelle TE, Lovdal T, Berg T (2000) Phagosome dynamics and function. Bioessays 22:255–263.  https://doi.org/10.1002/(SICI)1521-1878(200003)22:3<255::AID-BIES7>3.0.CO;2-R Google Scholar
  166. Turbeville JM (1991) Nemertinea. In: Harrison FW, Bogitsh (eds) Microscopic anatomy of invertebrates, vol 3. John Wiley and Sons, New York, pp 285–328Google Scholar
  167. Van der Heyde HC (1922) On the physiology of digestion, respiration and excretion in echinoderms. C de Boer Publ, Amsterdam, p 119Google Scholar
  168. Vandermeulen JH (1970) Functional morphology of the digestive tract epithelium in Phoronis vancouverensis (Pixell): an ultrastructural and histochemical study. J Morphol 130:271–285.  https://doi.org/10.1002/jmor.1051300302 Google Scholar
  169. Van-Praët M (1985) Nutrition of sea anemones. In: Advances in Marine Biology, vol 22. Elsevier, Amsterdam, pp 65–99Google Scholar
  170. Vlisidou I, Wood W (2015) Drosophila blood cells and their role in immune responses. FEBS J 282:1368–1382.  https://doi.org/10.1111/febs.13235 Google Scholar
  171. Wägele J-W, Welsch U, Müller W (1981) Fine structure and function of the digestive tract of Cyathura carinata (Crustacea, Isopoda). Zoomorphology 98:69–88.  https://doi.org/10.1007/BF00310321 Google Scholar
  172. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479.  https://doi.org/10.1038/nrg2099 Google Scholar
  173. Walker G (1972) The digestive system of the slug, Agriolimax reticulatus (Muller): experiments on phagocytosis and nutrient absorption. Proc malac Soc Lond 40:33–43Google Scholar
  174. Weissenfels N (1976) Bau und Funktion des Süwasserschwamms Ephydatia fluviatilis L. (Porifera). Zoomorphologie 85:73–88.  https://doi.org/10.1007/BF00995405 Google Scholar
  175. Welsch U, Dilly PN (1980) Elektronenmikroskopische Beobachtungen am Epithel des Verdauungstraktes der Hemichordaten. Ein Beitrag zur Evolution des Darmtraktes niederer Deuterostomier (Hemi- und Protochordaten) und seiner nervoesen und hormonalen Steuerung. Zool Jb (Anat) 104:25–39Google Scholar
  176. Welsch U, Storch V (1969) Zur Feinstruktur und Histochemie des Kiemendarmes und der ,,Leber von Branchiostoma lanceolatum (Pallas). Z Zellforsch 102:432–446Google Scholar
  177. Willenz P, Van de Vyver G (1982) Endocytosis of latex beads by the exopinacoderm in the fresh water sponge Ephydatia fluviatilis: an in vitro and in situ study in SEM and TEM. J Ultrastruct Res 79:294–306.  https://doi.org/10.1016/S0022-5320(82)90005-3 Google Scholar
  178. Wilson JM, Whitney JA, Neutra MR (1991) Biogenesis of the apical endosome-lysosome complex during differentiation of absorptive epithelial cells in rat ileum. J Cell Sci 100(Pt 1):133–143Google Scholar
  179. Wright KA (1991) Nematoda. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. John Wiley and Sons, New York, pp 111–195Google Scholar
  180. Wurdak ES (1987) Ultrastructure and histochemistry, of the stomach of Asplanchna sieboldi. Hydrobiologia 147:361–371.  https://doi.org/10.1007/BF00025765 Google Scholar
  181. Yonge CM (1937) Evolution and adaptation in the digestive system of the Metazoa. Biol Rev 12:87–114Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Developmental BiologyUniversity of California, Los Angeles (UCLA)Los AngelesUSA
  2. 2.Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaBarcelonaSpain
  3. 3.ICREA (Institut Català de Recerca i Estudis Avancats)BarcelonaSpain

Personalised recommendations