Characterization of the olfactory system of the giant honey bee, Apis dorsata

  • Sandhya Mogily
  • Meenakshi VijayKumar
  • Sunil Kumar Sethy
  • Joby JosephEmail author
Regular Article


Apis dorsata is an open-nesting, undomesticated, giant honey bee found in southern Asia. We characterized a number of aspects of olfactory system of Apis dorsata and compared it with the well-characterized, western honeybee, Apis mellifera, a domesticated, cavity-nesting species. A. dorsata differs from A. mellifera in nesting behavior, foraging activity, and defense mechanisms. Hence, there can be different demands on its olfactory system. We elucidated the glomerular organization of A. dorsata by creating a digital atlas for the antennal lobe and visualized the antennal lobe tracts and localized their innervations. We showed that the neurites of Kenyon cells with cell bodies located in a neighborhood in calyx retain their relative neighborhoods in the pedunculus and the vertical lobe forming a columnar organization in the mushroom body. The vertical lobe and the calyx of the mushroom body were found to be innervated by extrinsic neurons with cell bodies in the lateral protocerebrum. We found that the species was amenable to olfactory conditioning and showed good learning and memory retention at 24 h after training. It was also amenable to massed and spaced conditioning and could distinguish trained odor from an untrained novel odor. We found that all the above mentioned features in A. dorsata are very similar to those in A. mellifera. We thereby establish A. dorsata as a good model system, strikingly similar to A. mellifera despite the differences in their nesting and foraging behavior.


Apis dorsata Olfactory system Digital atlas Mushroom body Olfactory conditioning 



We would like to thank Uttam Krishna Sharma for his support in procuring Apis dorsata and Shilpi Singh for her support in carrying out electrophysiology and in editing the manuscript. We thank Ravindra Kumar Pydi (National Institute of Rural Development, Hyderabad) for providing Apis mellifera bees. We also thank Prasad Miriyala (Central Instruments Laboratory, University of Hyderabad) and Nalini Manthapuram (Centre for Nanotechnology, University of Hyderabad) for their support in confocal imaging. We are grateful to the UPE scheme of University Grants Commission, India, and DST Purse for providing funding to the University of Hyderabad.


The study was funded by UPE-UGC, CSIR, and DST Purse.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2019_3078_Fig10_ESM.png (277 kb)

(PNG 276 kb)

441_2019_3078_MOESM1_ESM.tif (844 kb)
High resolution image (TIF 843 kb)
441_2019_3078_Fig11_ESM.png (277 kb)

(PNG 277 kb)

441_2019_3078_MOESM2_ESM.tif (838 kb)
High resolution image (TIF 837 kb)
441_2019_3078_MOESM3_ESM.avi (891 kb)
ESM 3 (AVI 891 kb)
441_2019_3078_MOESM4_ESM.avi (1.7 mb)
ESM 4 (AVI 1790 kb)


  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437(3):363–383Google Scholar
  2. Anton S, Homberg U (1999) Antennal lobe structure. Insect olfaction. Springer, Berlin, Heidelberg, pp 97–124Google Scholar
  3. Arias MC, Sheppard WS (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol Phylogenet Evol 37(1):25–35Google Scholar
  4. Arnold G, Masson C, Budharugsa S (1985) Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tissue Res 242(3):593–605Google Scholar
  5. Bastin F, Couto A, Larcher V, Phiancharoen M, Koeniger G, Koeniger N, Sandoz JC (2018) Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis). J Comp Neurol 526(18):3020–3034Google Scholar
  6. Bicker G, Kreissl S, Hofbauer A (1993) Monoclonal antibody labels olfactory and visual pathways in Drosophila and Apis brains. J Comp Neurol 335(3):413–424Google Scholar
  7. Bitterman M, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107Google Scholar
  8. Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Menzel R (2005) Three-dimensional average shape atlas of the honeybee brain and its applications. J Comp Neurol 492(1):1–19Google Scholar
  9. Brockmann A, Brückner D (1995) Projection pattern of poreplate sensory neurones in honey bee worker, Apis mellifera L. (Hymenoptera: Apidae). Int J Insect Morphol Embryol 24(4):405–411Google Scholar
  10. Brockmann A, Brückner D (2001) Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A florea and A mellifera. Naturwissenschaften 88(2):78–81Google Scholar
  11. Brockmann A, Brückner D (2003) Drone antennae and evolution of sex-pheromone communication in honey bees. Indian Bee J 65(3 & 4):131–138Google Scholar
  12. Carlsson MA, Galizia CG, Hansson BS (2002) Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae). Chem Senses 27(3):231–244Google Scholar
  13. Engel MS (1998) Fossil honey bees and evolution in the genus Apis (Hymenoptera: Apidae). Apidologie 29(3):265–281Google Scholar
  14. Esslen J, Kaissling KE (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (A. mellifera L.). Zoomorphologie 83(3):227–251Google Scholar
  15. Flanagan D, Mercer AR (1989) An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L (Hymenoptera: Apidae). Int J Insect Morphol Embryol 18(2-3):145–159Google Scholar
  16. Fonta C, Sun X, Masson C (1993) Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours. Chem Senses 18(2):101–119Google Scholar
  17. Galizia CG (2008) Insect olfaction. In The Senses: A Comprehensive Reference. Vol 4. Olfaction & taste, ed. S Firestein GK Beauchamp San Diego: Academic: 725–70Google Scholar
  18. Galizia CG, Menzel R (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr Opin Neurobiol 10(4):504–510Google Scholar
  19. Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420Google Scholar
  20. Galizia CG, Szyszka P (2008) Olfactory coding in the insect brain: molecular receptive ranges, spatial and temporal coding. Entomologia experimentalis et applicata 128(1):81–92Google Scholar
  21. Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295(3):383–394Google Scholar
  22. Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193(8):801–824Google Scholar
  23. Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19(2):54–66Google Scholar
  24. Gowda V (2016) Allometric scaling of brain, brain components and neurons with body size of social bees.
  25. Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci 20(6):245–252Google Scholar
  26. Hansson BS, Anton S (2000) Function and morphology of the antennal lobe: new developments. Annu Rev Entomol 45(1):203–231Google Scholar
  27. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20(1):595–631Google Scholar
  28. Ito I, Ong RC, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11(10):1177–1184Google Scholar
  29. Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, Keshishian H (2014) A systematic nomenclature for the insect brain. Neuron 81(4):755–765Google Scholar
  30. Jung J, Kim DI, Ilyasov R, Kim K, Kwon HW (2017) Comparative study of olfactory learning and memory in Apis cerana and Apis mellifera foragers. Jf Apicult 32(4):275–280Google Scholar
  31. Karpe SD, Jain R, Brockmann A, Sowdhamini R (2016) Identification of complete repertoire of Apis florea odorant receptors reveals complex orthologous relationships with Apis mellifera. Genome Biol Evol 8(9):2879–2895Google Scholar
  32. Kaspi R, Shafir S (2012) Associative olfactory learning of the red dwarf honeybee Apis florea. Apidologie 44(1):100–109Google Scholar
  33. Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499(6):933–952Google Scholar
  34. Kropf J, Kelber C, Bieringer K, Rossler W (2014) Olfactory subsystems in the honeybee: sensory supply and sex specificity. Cell Tissue Res 357(3):583–595Google Scholar
  35. Kumar NR, Nayyar K, Sharma R, Anudeep A (2014) Ultramorphology of antennal sensilla of open-nesting honey bees Apis florea F. and Apis dorsata F.(Hymenoptera: Apidae). J Appl Nat Sci 6(1):315–319Google Scholar
  36. Laurent G (1997) Olfactory processing: maps, time and codes. Curr Opin Neurobiol 7(4):547–553Google Scholar
  37. Lin T, Li C, Liu J, Smith B H, Lei H, Zeng X (2018) Glomerular organization in the antennal lobe of the oriental fruit fly Bactrocera dorsalis. Front Neuroanat 12Google Scholar
  38. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15(17):R700–R713Google Scholar
  39. Masante-Roca I, Gadenne C, Anton S (2005) Three-dimensional antennal lobe atlas of male and female moths, Lobesia botrana (Lepidoptera: Tortricidae) and glomerular representation of plant volatiles in females. J Exp Biol 208(6):1147–1159Google Scholar
  40. Matsumoto Y, Menzel R, Sandoz JC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J Neurosci Methods 211(1):159–167Google Scholar
  41. Menzel R (1993) Associative learning in honey bees. Apidologie 24(3):157–168Google Scholar
  42. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185(4):323–340Google Scholar
  43. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13(11):758Google Scholar
  44. Menzel R, Erber J (1978) Learning and memory in bees. Sci Am 239(1):102–111Google Scholar
  45. Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19(1):379–404Google Scholar
  46. Menzel R, Hammer M, Müller U, Rosenboom H (1996) Behavioral, neural and cellular components underlying olfactory learning in the honeybee. J Physiol 90(5–6):395–398Google Scholar
  47. Menzel R, Manz G, Menzel R, Greggers U (2001) Massed and spaced learning in honeybees: the role of CS, US, the inter trial interval, and the test interval. Learn Mem 8(4):198–208Google Scholar
  48. Mobbs P (1982) The brain of the honeybee Apis mellifera. I The connections and spatial organization of the mushroom bodies. Phil Trans R Soc Lond B 298(1091):309–354Google Scholar
  49. Mombaerts P, Wang DC, Chao SK, Nemes A, Mendelsohn M, Axel R (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686Google Scholar
  50. Muller D, Abel R, Brandt R, Zockler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(5):359–370Google Scholar
  51. Müller D, Abel R, Brandt R, Zöckler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188(5):359–370Google Scholar
  52. Nawrot MP (2012) Dynamics of sensory processing in the dual olfactory pathway of the honeybee. Apidologie 43:269Google Scholar
  53. Nishino H, Nishikawa M, Mizunami M, Yokohari F (2009) Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera. J Comp Neurol 515(2):161–180Google Scholar
  54. Pareto A (1972) Die zentrale Verteilung der Fühlerafferenz bei Arbeiterinnen der Honigbiene, Apis mellifera L. Z Zellforsch Mikrosk Anat 131(1):109–140Google Scholar
  55. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16(11):000–000Google Scholar
  56. Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17(3):243–294Google Scholar
  57. Rössler W, Brill MF (2013) Parallel processing in the honeybee olfactory pathway: structure, function, and evolution. J Comp Physiol A 199(11):981–996Google Scholar
  58. Sachse S, Galizia CG (2006) In microcircuits: the interface between neurons and global brain function. Topography and dynamics of the olfactory system. MIT press, Cambridge, MA, pp 251–273Google Scholar
  59. Sandoz JC, Menzel R (2001) Side-specificity of olfactory learning in the honeybee: generalization between odors and sides. Learn Mem 8(5):286–294Google Scholar
  60. Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246(3):287–300Google Scholar
  61. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Tinevez JY (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676Google Scholar
  62. Sinakevitch IT, Smith AN, Locatelli F, Huerta R, Bazhenov M, Smith BH (2013) Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front Syst Neurosci 7:70Google Scholar
  63. Smith BH, Menzel R (1989) The use of electromyogram recordings to quantify odourant discrimination in the honey bee, Apis mellifera. J Insect Physiol 35(5):369–375Google Scholar
  64. Soucy ER, Albeanu DF, Fantana AL, Murthy VN, Meister M (2009) Precision and diversity in an odor map on the olfactory bulb. Nat Neurosci 12(2):210–220Google Scholar
  65. Squire LR (1987) Memory and brain. Oxford Univ. Press, New York/OxfordGoogle Scholar
  66. Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39(6):991–1004Google Scholar
  67. Suzuki H (1975) Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee. J Insect Physiol 21(4):831–847Google Scholar
  68. Tully T, Preat T, Boynton S, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79(1):35–47Google Scholar
  69. Wang Z, Tan K (2013) Comparative analysis of olfactory learning of Apis cerana and Apis mellifera. Apidologie 45(1):45–52Google Scholar
  70. Witthöft W (1967) Absolute anzahl und verteilung der zellen im him der honigbiene. Zeitschrift für Morphologie der Tiere 61(1):160–184Google Scholar
  71. Zwaka H, Münch D, Manz G, Menzel R, Rybak J (2016) The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera. Front Neuroanat 10:90Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Neural and Cognitive SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations