Cell and Tissue Research

, Volume 377, Issue 3, pp 415–443 | Cite as

Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles

  • Jasna ŠtrusEmail author
  • Nada Žnidaršič
  • Polona Mrak
  • Urban Bogataj
  • Günter Vogt


The digestive system of the malacostracan crustaceans, namely the decapods, isopods, amphipods and mysids, is among the most complex organ systems of the animal kingdom serving multiple functions such as food processing, absorption and storage of nutrients, synthesis of digestive enzymes and blood proteins, detoxification of xenobiotics and osmoregulation. It is rather well investigated compared to other invertebrates because the Malacostraca include many ecological keystone species and food items for humans. The Decapoda and Peracarida share food processing with chewing and filtering structures of the stomach but differ with respect to morphology and ultrastructure of the digestive glands. In the Peracarida, the digestive glands are composed of few, relatively large lateral caeca, whereas in the Decapoda, hundreds to thousands of blindly ending tubules form a voluminous hepatopancreas. Morphogenesis and onset of functionality of the digestive system strongly depend on the mode of development. The digestive system is early developed in species with feeding planktonic larvae and appears late in species with direct lecithotrophic development. Some structures of the digestive system like the stomach ossicles are rather constant in higher taxa and are of taxonomic value, whereas others like the chewing structures are to some degree adapted to the feeding strategy. The nutrient absorbing and storing cells of the digestive glands show considerable ultrastructural variation during moult cycle, vitellogenesis and starvation. Some of the various functions of the digestive system are already assigned to specific sections of the digestive tract and cell types, but others still await precise localization.


Decapoda Peracarida Functional morphology Cell ultrastructure Morphogenesis 



This work was supported and financed by the Slovenian Research Agency (ARRS), MR grants Nos. 1000-11-310087 and 1000-15-0510 and the research program Integrative Zoology and Speleobiology No. P1-0184.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Abdu U, Yehezkel G, Sagi A (2000) Oocyte development and polypeptide dynamics during ovarian maturation in the red-claw crayfish Cherax quadricarinatus. Invert Reprod Dev 37:75–83Google Scholar
  2. Abrunhosa F, Kittaka J (1997a) Functional morphology of mouthparts and foregut of the last zoea, glaucothoe and first juvenile of the king crabs Paralithodes camtschaticus, P. brevipes and P. platypus. Fish Sci 63:923–930Google Scholar
  3. Abrunhosa F, Kittaka J (1997b) Morphological changes in the midgut, midgut gland and hindgut during the larval and postlarval development of the red king crab Paralithodes camtschaticus. Fish Sci 63:746–754Google Scholar
  4. Abrunhosa F, Melo M (2008) Development and functional morphology of the foreguts of larvae and postlarvae of three crustacean decapods. Braz J Biol 68:221–228Google Scholar
  5. Abrunhosa F, Melo M, Lima JF, Abrunhosa J (2006) Developmental morphology of mouthparts and foregut of the larvae and postlarvae of Lepidophthalmus siriboia Felder & Rodrigues, 1993 (Decapoda: Callianassidae). Acta Amaz 36:335–342Google Scholar
  6. Abrunhosa FA, Simith DJ, Monteiro JR, Souza Junior AN, Oliva PA (2011) Development and functional morphology of the larval foregut of two brachyuran species from Northern Brazil. An Acad Bras Cienc 83:1269–1278Google Scholar
  7. Abubakr MA, Jones DA (1992) Functional morphology and ultrastructure of the anterior mid-gut diverticulae of larvae of Penaeus monodon Fabricius, 1798 (Decapoda, Natantia). Crustaceana 62:142–158Google Scholar
  8. Ahearn GA (1987) Nutrient transport by the crustacean gastrointestinal tract: recent advances with vesicle techniques. Biol Rev 62:45–63Google Scholar
  9. Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J (2011) Subphylum Crustacea Brünnich, 1772. Zootaxa 3148:165–191Google Scholar
  10. Al-Mohanna SY, Nott JA (1986) B-cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc UK 66:403–414Google Scholar
  11. Al-Mohanna SY, Nott JA (1987) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137Google Scholar
  12. Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Mar Biol 101:535–544Google Scholar
  13. Al-Mohanna SY, Nott JA, Lane DJW (1985a) Mitotic E- and secretory F-cells in the hepatopancreas of the shrimp Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc UK 65:901–910Google Scholar
  14. Al-Mohanna SY, Nott JA, Lane DJW (1985b) M-‘midget’ cells in the hepatopancreas of the shrimp, Penaeus semisulcatus De Haan, 1844 (Decapoda, Natantia). Crustaceana 48:260–268Google Scholar
  15. Anger K (2001) The biology of decapod crustacean larvae. Crustacean issues 14. A.A. Balkema, RotterdamGoogle Scholar
  16. Anger K, Storch V, Anger V, Capuzzo JM (1985) Effects of starvation on moult cycle and hepatopancreas of stage I lobster (Homarus americanus) larvae. Helgol Meeresunters 39:107–116Google Scholar
  17. Ashley CM, Simpson MG, Holdich DM, Bell DR (1996) 2,3,7,8-Tetrachloro-dibenzo-p-dioxin is a potent toxin and induces cytochrome P 450 in the crayfish, Pacifastacus leniusculus. Aquat Toxicol 35:157–169Google Scholar
  18. Bettica A, Shay MT, Vernon G, Witkus R (1984) An ultrastructural study of cell differentiation and associated acid phosphatase activity in the hepatopancreas of Porcellio scaber. Symp Zool Soc Lond 53:199–215Google Scholar
  19. Bettica A, Witkus R, Vernon GM (1987) Ultrastructure of the foregut-hindgut junction in Porcellio scaber Latreille. J Crust Biol 7:619–623Google Scholar
  20. Biesiot PM, McDowell JE (1995) Midgut-gland development during early life-history stages of the American lobster Homarus americanus. J Crust Biol 15:679–685Google Scholar
  21. Bode W, Gomis-Rüth FX, Huber R, Zwilling R, Stöcker W (1992) Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358:164–167Google Scholar
  22. Bogataj U, Praznik M, Mrak P, Štrus J, Tušek-Žnidarič M, Žnidaršič N (2018) Comparative ultrastructure of cells and cuticle in the anterior chamber and papillate region of Porcellio scaber (Crustacea, Isopoda) hindgut. In: Hornung E, Taiti S, Szlavecz K (eds) Isopods in a changing world. ZooKeys, vol 801, pp 427–458Google Scholar
  23. Böhm H (1996) Activity of the stomatogastric system in free-moving crayfish, Orconectes limosus Raf. Zoology 99:247–257Google Scholar
  24. Bouchon D, Zimmer M, Dittmer J (2016) The terrestrial isopod microbiome: an all-in-one toolbox for animal microbe interactions of ecological relevance. Front Microbiol 7:1472Google Scholar
  25. Brösing A (2010) Recent developments on the morphology of the brachyuran foregut ossicles and gastric teeth. Zootaxa 2510:1–44Google Scholar
  26. Brösing A, Türkay M (2011) Gastric teeth of some thoracotreme crabs and their contribution to the brachyuran phylogeny. J Morphol 272:1109–1115Google Scholar
  27. Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149Google Scholar
  28. Castejon D, Ribes E, Dufort M, Rotlland G, Guerao G (2015a) Foregut morphology and ontogeny of the mud crab Dyspanopeus sayi (Smith, 1869) (Decapoda, Brachyura, Panopeidae). Arthropod Struct Dev 44:33–41Google Scholar
  29. Castejon D, Rotlland G, Ribes E, Dufort M, Guerao G (2015b) Foregut morphology and ontogeny of the spider crab Maja brachydactyla (Brachyura, Majoidea, Majidae). J Morphol 276:1109–1122Google Scholar
  30. Castejon D, Rotlland G, Ribes E, Dufort M, Guerao G (2018) Morphology and ultrastructure of the esophagus during the ontogeny of the spider crab Maja brachydactyla (Decapoda, Brachyura, Majidae). J Morphol 279:710–723Google Scholar
  31. Ceccaldi HJ (2006) The digestive tract: anatomy, physiology, and biochemistry. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology – anatomy, taxonomy, biology. The Crustacea, vol 2. Brill, Leiden, pp 85–203Google Scholar
  32. Cerenius L, Liang Z, Duvic B, Keyser P, Hellmann U, Palva ET, Iwanaga S, Söderhäll K (1994) Structure and biological activity of a 1,3-ß-D-glucan-binding protein in crustacean blood. J Biol Chem 269:29462–29467Google Scholar
  33. Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Goiney CC, Conterato AJ, Bruns EA, Hsu Y-WA, Li L, Dickinson PS (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714Google Scholar
  34. Coleman CO (1992) Foregut morphology of Amphipoda (Crustacea). An example of its relevance for systematics. Ophelia 14:346–370Google Scholar
  35. Coleman CO (1994) Comparative anatomy of the alimentary canal of hyperid amphipods. J Crust Biol 4:346–370Google Scholar
  36. Coruzzi L, Witkus R, Vernon GM (1982) Function-related structural characters and their modifications in the hindgut epithelium of two terrestrial isopods, Armadillidium vulgare and Oniscus asellus. Exp Cell Biol 50:229–240Google Scholar
  37. Davis LE, Burnett AL (1964) A study of growth and cell differentiation in the hepatopancreas of the crayfish. Dev Biol 10:122–153Google Scholar
  38. De Grave S, Pentcheff ND, Ahyong ST, Chan TY, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bull Zool (Suppl 21:1–109Google Scholar
  39. Del Ramo J, Pastor A, Torreblanca A, Medina J, Díaz-Mayans J (1989) Cadmium-binding proteins in midgut gland of freshwater crayfish Procambarus clarkii. Bull Environ Contam Toxicol 42:241–246Google Scholar
  40. Diaz AC, Fernandez Gimenez AV, Velurtas SM, Fenucci JL (2008) Ontogenetic changes in the digestive system of Pleoticus muelleri (Decapoda, Penaeoidea). Invertebr Reprod Dev 52:1–12Google Scholar
  41. Eberl R (2012) Distribution, habitat and food preferences of sympatric high intertidal isopod species Ligia occidentalis and Ligia pallasii (Ligiidae: Oniscidea). J Nat Hist 46:29–30Google Scholar
  42. Factor RJ (1981) Development and metamorphosis of the digestive system of larval lobsters, Homarus americanus (Decapoda: Nephropidae). J Morphol 169:225–242Google Scholar
  43. Factor RJ (1982) Development and metamorphosis of the feeding apparatus of the stone crab, Menippe mercenaria (Brachyura, Xanthidae). J Morphol 172:299–312Google Scholar
  44. Friesen JA, Mann KH, Willison JHM (1986) Gross anatomy and fine structure of the gut of marine mysid shrimp Mysis stenolepis. Can J Zool 64:431–441Google Scholar
  45. Garm A (2004) Mechanical functions of setae from the mouth apparatus of seven species of decapod crustaceans. J Morphol 260:85–100Google Scholar
  46. Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801Google Scholar
  47. Gherardi F, Souty-Grosset C, Vogt G, Diéguez-Uribeondo J, Crandall KA (2010) Infraorder Astacidea Latreille, 1802 p.p.: the freshwater crayfish. In: Schram FR, von Vaupel Klein JC (eds) Treatise on zoology – anatomy, taxonomy, biology. The Crustacea. Vol 9, part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim). Brill, Leiden, pp 269–423Google Scholar
  48. Graf F, Michaut P (1980) Fine structure of the midgut posterior caeca in the crustacean Orchestia in intermolt: recognition of two distinct segments. J Morphol 165:261–284Google Scholar
  49. Greenaway P (1985) Calcium balance and moulting in the Crustacea. Biol Rev 60:425–454Google Scholar
  50. Gruner H-E (1993) 1. Klasse Crustacea. In: Gruner H-E (Hrsg) Lehrbuch der Speziellen Zoologie. Band 1: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer Verlag, Stuttgart, pp 448–1030Google Scholar
  51. Hall M, Wang R, van Antwerpen R, Sottrup-Jensen L, Söderhäll K (1999) The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc Natl Acad Sci U S A 96:1965–1970Google Scholar
  52. Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. Zoology 217:599–627Google Scholar
  53. Hames CAC, Hopkin SP (1991) A daily cycle of apocrine secretion by the B cells in the hepatopancreas of terrestrial isopods. Can J Zool 69:1931–1937Google Scholar
  54. Hartenstein R (1964) Feeding, digestion, glycogen, and the environmental conditions of the digestive system in Oniscus asellus. J Insect Physiol 10:611–612Google Scholar
  55. Hassall M, Jennings JB (1975) Adaptive features of gut structure and digestive physiology in the terrestrial isopod Philoscia muscorum (Scopoli) 1763. Biol Bull 149:348–364Google Scholar
  56. Herring P (1976) Bioluminescence in decapod Crustacea. J Mar Biol Assoc UK 56:1029–1047Google Scholar
  57. Herring P (1982) The comparative morphology of hepatic photophores in decapod Crustacea. J Mar Biol Assoc UK 61:723–737Google Scholar
  58. Hinton DJ, Corey S (1979) The mouthparts and digestive tract in the larval stages of Homarus americanus. Can J Zool 57:1413–1423Google Scholar
  59. Holdich DM, Mayes KR (1975) A fine-structural re-examination of the so-called ‘midgut’ of the isopod Porcellio. Crustaceana 29:186–192Google Scholar
  60. Hopkin S, Martin M (1982) The distribution of zinc, cadmium, lead and copper within the hepatopancreas of a woodlouse. Tissue Cell 14:703–715Google Scholar
  61. Hornung E (2011) Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behaviour. Terr Arthropod Rev 4:95–130Google Scholar
  62. Hryniewiecka-Szyfter Z, Storch V (1986) The influence of starvation and different diets on the hindgut of isopoda (Mesidotea entomon, Oniscus asellus, Porcellio scaber). Protoplasma 134:53–59Google Scholar
  63. Hu KJ, Leung PC (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol B 146:69–80Google Scholar
  64. Icely JD, Nott JA (1984) On the morphology and fine structure of the alimentary canal of Corophium volutator (Pallas) (Crustacea: Amphipoda). Phil Trans R Soc Lond B 306:49–78Google Scholar
  65. Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (ed) Microscopic anatomy of invertebrates. Vol 10: Decapod Crustacea. Wiley-Liss, New York, pp 147–201Google Scholar
  66. James MO, Boyle SM (1998) Cytochromes P450 in Crustacea. Comp Biochem Physiol 121C:157–172Google Scholar
  67. Kao D, Lai AG, Stamataki E, Rosic S, Konstandinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A (2016) The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 5:e20062Google Scholar
  68. Khayat M, Funkenstein B, Tietz A, Lubzens E (1995) In vivo, in vitro and cell-free synthesis of hemocyanin in the shrimp Penaeus semisulcatus (de Haan). Comp Biochem Physiol B 112:31–38Google Scholar
  69. Kobusch W (1998) The foregut of the Mysida (Crustacea, Peracarida) and its phylogenetic relevance. Phil Trans R Soc Lond B 353:559–581Google Scholar
  70. Köhler H-R, Hüttenrauch K, Berkus M, Gräff S, Alberti G (1996) Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Appl Soil Ecol 3:1–15Google Scholar
  71. Kostanjšek R, Štrus J, Avguštin G (2002) Genetic diversity of bacteria associated with the hindgut of the terrestrial crustacean Porcellio scaber (Crustacea: Isopoda). FEMS Microbiol Ecol 40:171–179Google Scholar
  72. Kostanjšek R, Avguštin G, Drobne D, Štrus J (2003) Morphological and molecular examination of bacteria associated with the wall of the papillate region of the gut in Porcellio scaber. In: Sfenthourakis S, Araujo PB, Hornung E, Schmalfuss H, Taiti S, Szlavecz K (eds) The biology of terrestrial isopods. Crustaceana monographs 2. Brill, Leiden, pp 103–120Google Scholar
  73. Kostanjšek R, Štrus J, Lapanje A, Avguštin G, Rupnik M, Drobne D (2006) Intestinal microbiota of terrestrial isopods. In: König H, Varma A (ed) Soil biology, Vol 6: intestinal microorganism in soil invertebrates. Springer, Berlin, pp 115–131Google Scholar
  74. Kostanjšek R, Štrus J, Avguštin G (2007) “Candidatus Bacilloplasma”, a novel lineage of Mollicutes associated with the hindgut wall of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Appl Environ Microbiol 73:5566–5573Google Scholar
  75. Kostanjšek R, Milatovič M, Štrus J (2010) Endogenous origin of endo-β-1,4-glucanase in common woodlouse Porcellio scaber (Crustacea, Isopoda). J Comp Physiol B 180:1143–1153Google Scholar
  76. Kozlovskaja LS, Striganova BR (1977) Food digestion and assimilation in desert woodlouse and their relations to the soil microflora. Ecol Bull 25:240–245Google Scholar
  77. Kummer G, Keller R (1993) High-affinity binding of crustacean hyperglycemic hormone (CHH) to hepatopancreatic plasma membranes of the crab Carcinus maenas and the crayfish Orconectes limosus. Peptides 14:103–108Google Scholar
  78. Lehnert SA, Johnson SE (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the Black Tiger Shrimp Penaeus monodon. Comp Biochem Physiol B 133:163–171Google Scholar
  79. Lemmens JWTJ, Knott B (1994) Morphological changes in external and internal feeding structures during the transition phyllosoma-puerulus-juvenile in the western rock lobster (Panulirus cygnus, Decapoda: Palinuridae). J Morphol 220:271–280Google Scholar
  80. Lešer V, Drobne D, Vilhar B, Kladnik A, Žnidaršič N, Štrus J (2008) Epithelial thickness and lipid droplets in the hepatopancreas of Porcellio scaber (Crustacea: Isopoda) in different physiological conditions. Zoology 111:419–432Google Scholar
  81. Linton SM, Greenaway P, Towle DW (2006) Endogenous production of endo-beta-1,4-glucanase by decapod crustaceans. J Comp Physiol B 176:339–348Google Scholar
  82. Loizzi RF (1971) Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Z Zellforsch Mikrosk Anat 113:420–440Google Scholar
  83. Lovett DL, Felder DL (1989) Ontogeny of gut morphology in the white shrimp Penaeus setiferus (Decapoda, Penaeidae). J Morphol 201:253–272Google Scholar
  84. Loya-Javellana GN, Fielder DR, Thorne MJ (1995) Foregut evacuation, return of appetite and gastric fluid secretion in the tropical freshwater crayfish, Cherax quadricarinatus. Aquaculture 134:295–306Google Scholar
  85. Manship BM, Walker AJ, Davies AJ (2011) Brooding and embryonic development in the crustacean Paragnathia formica (Hesse, 1864) (Peracarida: Isopoda: Gnathiidae). Arthropod Struct Dev 40:135–145Google Scholar
  86. Martin JW, Davis GE (2001) An updated classification of the recent Crustacea. Science Series 39. Natural History Museum of Los Angeles County, Los AngelesGoogle Scholar
  87. McGaw IJ, Curtis DL (2013) A review of gastric processing in decapod crustaceans. J Comp Physiol B 183:443–465Google Scholar
  88. Mickėnienė L (1999) Bacterial flora in the digestive tract of native and alien species of crayfish in Lithuania. Freshwater Crayfish 12:279–287Google Scholar
  89. Mikami S, Greenwood JG, Takashima F (1994) Functional morphology and cytology of the phyllosomal digestive system of Ibacus ciliatus and Panulirus japonicus (Decapoda, Scyllaridae and Palinuridae). Crustaceana 67:212–225Google Scholar
  90. Milatovič M, Kostanjšek R, Štrus J (2010) Ontogenetic development of Porcellio scaber: staging based on microscopic anatomy. J Crust Biol 30:225–235Google Scholar
  91. Möhrlen F, Baus S, Gruber A, Rackwitz H-R, Schnölzer M, Vogt G, Zwilling R (2001) Activation of pro-astacin. Immunological and model peptide studies on the processing of immature astacin, a zinc-endopeptidase from the crayfish Astacus astacus. Eur J Biochem 268:2540–2546Google Scholar
  92. Mrak P, Bogataj U, Štrus J, Žnidaršič N (2015) Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda). In: Taiti S, Hornung E, Štrus J, Bouchon D (eds) Trends in terrestrial isopod biology. ZooKeys, vol 515, pp 93–109Google Scholar
  93. Muhammad F, Zhang ZF, Shao MY, Dong YP, Muhammad S (2012) Ontogenesis of digestive system in Litopenaeus vannamei (Boone, 1931) (Crustacea: Decapoda). Ital J Zool 79:77–85Google Scholar
  94. Mykles DL (1979) Ultrastructure of alimentary epithelia of lobsters, Homarus americanus and H. gammarus, and crab, Cancer magister. Zoomorphol 92:201–215Google Scholar
  95. Nair SG (1956) On the embryology of the isopod Irona. J Embryol Exp Morph 4:1–33Google Scholar
  96. Nair GA, Attia FA, Saeid NH (1994) Food preference and growth-rates of the woodlouse Porcellio scaber Latreille, 1804 (Isopoda, Oniscidea, Porcellionidae). Afr J Ecol 32:80–84Google Scholar
  97. Nakamura K, Seki K (1990) Organogenesis during metamorphosis in the prawn Penaeus japonicus. Nippon Suisan Gakkaishi 56:1413–1417Google Scholar
  98. Nishida S, Quigley BD, Booth BD, Nemoto T, Kittaka J (1990) Comparative morphology of the mouthparts and foregut of the final-stage phyllosoma, puerulus, and postpuerulus of the rock lobster Jasus edwardsii (Decapoda: Palinuridae). J Crust Biol 10:293–305Google Scholar
  99. Nishida S, Takahashi Y, Kittaka J (1995) Structural changes in the hepatopancreas of the rock lobster, Jasus edwardsii (Crustacea: Palinuridae) during development from the puerulus to post-puerulus. Mar Biol 123:837–844Google Scholar
  100. Odendaal JP, Reinecke AJ (2003) Quantifying histopathological alterations in the hepatopancreas of the woodlouse Porcellio laevis (Isopoda) as a biomarker of cadmium exposure. Ecotoxicol Environ Saf 56:319–325Google Scholar
  101. Pakes MJ, Weis AK, Mejia-Ortiz L (2014) Arthropods host intracellular chemosynthetic symbionts, too: cave study reveals an unusual form of symbiosis. J Crust Biol 34:334–341Google Scholar
  102. Palackal T, Faso L, Zung JL, Vernon G, Witkus R (1984) The ultrastructure of the hindgut epithelium of terrestrial isopods and its role in osmoregulation. Symp Zool Soc Lond 53:185–198Google Scholar
  103. Phupet B, Pitakpornpreecha T, Baowubon N, Runsaeng P, Utarabhand P (2018) Lipopolysaccharide- and β-1,3-glucan-binding protein from Litopenaeus vannamei: purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation. Dev Comp Immunol 81:167–179Google Scholar
  104. Prosi F, Dallinger R (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. I. Histochemical and ultrastructural characterization of metal-containing lysosomes. Cell Biol Toxicol 4:81–96Google Scholar
  105. Queiroz LD, Abrunhosa FA, Maciel CR (2011) Ontogenesis and functional morphology of the digestive system of the freshwater prawn, Macrobrachium amazonicum (Decapoda: Palaemonidae). Zoologia 28:395–402Google Scholar
  106. Reedy AR (1935) The structure, mechanism and development of the gastric armature in Stomatopoda with a discussion as to its evolution in Decapoda. Proc Natl Acad Sci India B Biol Sci 1:650–675Google Scholar
  107. Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136Google Scholar
  108. Rode J, Drašlar K (1998) The structure of the digestive system of woodlouse Cylisticus convexus de Geer (Crustacea: Isopoda: Oniscoidea): hindgut and hepatopancreas. Acta Biol Slov 42:25–37Google Scholar
  109. Roldan BM, Shivers RR (1987) The uptake and storage of iron and lead in cells of the crayfish (Orconectes propinquus) hepatopancreas and antennal gland. Comp Biochem Physiol 86C:201–214Google Scholar
  110. Saborowski R (2015) Nutrition and digestion. In: Chang ES, Thiel M (eds) The natural history of the Crustacea. Vol 4: physiological regulation. Oxford University Press, New York, pp 285–319Google Scholar
  111. Santos EA, Nery LEM, Keller R, Gonçalves AA (1997) Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiol Zool 70:415–420Google Scholar
  112. Schmitz EH (1992) Amphipoda. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates. Vol 9: Crustacea. Wiley-Liss, New York, pp 43–528Google Scholar
  113. Schram FR (1986) Crustacea. Oxford University Press, New YorkGoogle Scholar
  114. Schultz TW (1976) The ultrastructure of the hepatopancreatic caeca of Gammarus minus (Crustacea, Amphipoda). J Morphol 149:383–400Google Scholar
  115. Shechter A, Berman A, Singer A, Freiman A, Grinstein M, Erez J, Aflalo ED, Sagi A (2008) Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. Biol Bull 214:122–134Google Scholar
  116. Skiebe P (2003) Neuropeptides in the crayfish stomatogastric nervous system. Microsc Res Tech 60:302–312Google Scholar
  117. Sonakowska L, Włodarczyk A, Poprawa I, Binkowski M, Śróbka J, Kamińska K, Kszuk-Jendrysik M, Chajec L, Zajusz B, Rost-Roszkowska MM (2015) Structure and ultrastructure of the endodermal region of the alimentary tract in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 10:e0126900Google Scholar
  118. Soroka Y, Milner Y, Sagi A (2000) The hepatopancreas as a site of yolk protein synthesis in the prawn Macrobrachium rosenbergii. Invert Reprod Dev 37:61–68Google Scholar
  119. Spitzner F, Meth R, Krüger C, Nischik E, Eiler S, Sombke A, Torres G, Harzsch S (2018) An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front Zool 15:27Google Scholar
  120. Stöcker W, Raeder U, Bijlholt MMC, Wichertjes T, van Bruggen EFJ, Markl J (1988) The quaternary structure of four crustacean two-hexameric hemocyanins: immunocorrelation, stoichiometry, reassembly and topology of individual subunits. J Comp Physiol B 158:271–289Google Scholar
  121. Storch V (1982) Der Einfluß der Ernährung auf die Ultrastruktur der großen Zellen in den Mitteldarmdrüsen terrestrischer Isopoda (Armadillidium vulgare, Porcellio scaber). Zoomorphol 100:131–142Google Scholar
  122. Storch V (1984) The influence of nutritional stress on the ultrastructure of the hepatopancreas of terrestrial isopods. Symp Zool Soc Lond 53:167–184Google Scholar
  123. Storch V (1987) Microscopic anatomy and ultrastructure of the stomach of Porcellio scaber (Crustacea: Isopoda). Zoomorphol 106:301–311Google Scholar
  124. Storch V, Anger K (1983) Influence of starvation and feeding on the hepatopancreas of larval Hyas araneus (Decapoda, Majidae). Helgol Meeresunters 36:67–75Google Scholar
  125. Storch V, Štrus J (1989) Microscopic anatomy and ultrastructure of the alimentary canal in terrestrial isopods. Monit Zool Ital Monogr 4:105–126Google Scholar
  126. Storch V, Štrus J (2004) Comparative electron microscopic study of the stomach of Orchestia cavimana and Arcitalitrus sylvaticus (Crustacea: Amphipoda). J Morphol 259:340–346Google Scholar
  127. Storch V, Bluhm BA, Arntz WE (2001) Microscopic anatomy and ultrastructure of the digestive system of three Antarctic shrimps (Crustacea: Decapoda: Caridea). Polar Biol 24:604–614Google Scholar
  128. Storch V, Štrus J, Brandt A (2002) Microscopic anatomy and ultrastructure of the digestive system of Natatolana obtusata (Vanhöffen, 1914) (Crustacea, Isopoda). Acta Zool 83:1–14Google Scholar
  129. Stromberg JO (1964) On the embryology of the isopod Idotea. Arkiv för Zoologi 17:421–473Google Scholar
  130. Stromberg JO (1967) Segmentation and organogenesis in Limnoria lignorum (Rathke) (Isopoda). Arkiv för Zoologi 20:91–139Google Scholar
  131. Štrus J (1987) The effects of starvation on the structure and function of the hepatopancreas in the isopod Ligia italica. Inv Pesq 51:505–514Google Scholar
  132. Štrus J, Blejec A (2001) Microscopic anatomy of the integuments and digestive system in the moult cycle of Ligia italica (Oniscidea). In: Kensley B, Brusca RC (eds) Isopod systematics and evolution. AA Balkema, Rotterdam, pp 343–352Google Scholar
  133. Štrus J, Drašlar K (1988) Ultrastructural evidence of the midgut cells in the isopod Ligia italica (Isopoda: Crustacea). Inst Phys Conf Ser 93:149–150Google Scholar
  134. Štrus J, Storch V (1991) Moulting of the alimentary canal in Ligia italica Fab. and Porcellio scaber L. (Crustacea, Oniscoidea). In: Juchault P, Mocquard JP (ed) Proceedings of the Third International Symposium on the Biology of Terrestrial Isopods, Poitiers, pp. 189–194Google Scholar
  135. Štrus J, Burkhardt P, Storch V (1985) The ultrastructure of the midgut glands in Ligia italica under different nutritional conditions. Helgol wiss Meeresunters 39:367–374Google Scholar
  136. Štrus J, Drobne D, Ličar P (1995) Comparative anatomy and functional aspects of the digestive system in amphibious and terrestrial isopods (Isopoda: Oniscidea). In: Alikhan MA (ed) Terrestrial isopod biology. AA Balkema, Rotterdam, pp 15–23Google Scholar
  137. Štrus J, Klepal W, Repina J, Tušek-Žnidarič M, Milatovič M, Pipan Ž (2008) Ultrastructure of the digestive system and the fate of midgut during embryonic development in Porcellio scaber (Crustacea: Isopoda). Arthropod Struct Dev 37:287–298Google Scholar
  138. Suh H, Toda T, Hong S (1994) Ontogeny of foregut morphology in the euphausiid Euphausia pacifica. J Crust Biol 14:47–53Google Scholar
  139. Szyfter Z (1966) The correlation of moulting and changes occurring in the hepatopancreas of Porcellio scaber Latr. (Crustacea, Isopoda). Bull Soc Amis Sci Lett Poznan 7:95–114Google Scholar
  140. Takahashi Y, Hishida S, Kittaka J (1994) Histological characteristics of fat bodies in the puerulus of the rock lobster Jasus edwardsii (Hutton, 1875) (Decapoda, Palinuridae). Crustaceana 66:318–325Google Scholar
  141. Talbot P, Clark WH, Lawrence AL (1972) Fine structure of the midgut epithelium in the developing brown shrimp, Penaeus aztecus. J Morphol 138:467–485Google Scholar
  142. To TH, Brenner TL, Cavey MJ, Wilkens JL (2004) Histological organization of the intestine in the crayfish Procambarus clarkii. Acta Zool 85:119–130Google Scholar
  143. Trevisan M, Leroy D, Decloux N, Thomee JP, Compere P (2014) Moult-related changes in the integument, midgut and digestive gland in the freshwater amphipod Gammarus pulex. J Crust Biol 34:539–551Google Scholar
  144. Tziouveli V, Bastos-Gomez G, Bellwood O (2011) Functional morphology of mouthparts and digestive system during larval development of the cleaner shrimp Lysmata amboinensis (de Man, 1888). J Morphol 272:1080–1091Google Scholar
  145. Tzuc JT, Escalante DR, Herrera RR, Cortés GG, Ortiz MLA (2014) Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp. SpringerPlus 3:280Google Scholar
  146. Ullrich B, Storch V (1993) Development of the stomach in Euphausia superba Dana (Euphausiacea). J Crust Biol 13:423–431Google Scholar
  147. Van den Oord A (1966) The biosynthesis of the emulsifiers of the crab Cancer pagurus L. Comp Biochem Physiol 17:715–718Google Scholar
  148. Vannier J, Liu J, Lerosey-Aubril R, Vinther J, Daley AC (2014) Sophisticated digestive systems in early arthropods. Nat Commun 5:3641Google Scholar
  149. Vernon GM, Herold L, Witkus ER (1974) Fine structure of the digestive tract epithelium in the terrestrial isopod Armadillidium vulgare. J Morphol 144:337–359Google Scholar
  150. Vogt G (1985) Histologie und Cytologie der Mitteldarmdrüse von Penaeus monodon (Decapoda). Zool Anz 215:61–80Google Scholar
  151. Vogt G (1993) Differentiation of B-cells in the hepatopancreas of the prawn Penaeus monodon. Acta Zool 74:51–60Google Scholar
  152. Vogt G (1994) Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphol 114:83–101Google Scholar
  153. Vogt G (2002) Functional anatomy. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 53–151Google Scholar
  154. Vogt G (2008a) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J Morphol 269:790–811Google Scholar
  155. Vogt G (2008b) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13Google Scholar
  156. Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28:223–241Google Scholar
  157. Vogt G, Štrus J (1998) Diseases of the shrimp Palaemon elegans (Crustacea, Decapoda) in the Bay of Piran, Adriatic Sea. J Nat Hist 32:1795–1806Google Scholar
  158. Vogt G, Štrus J (1999) Hypogean life-style fuelled by oil. Naturwiss 86:43–45Google Scholar
  159. Vogt G, Storch V, Quinitio ET, Pascual FP (1985) Midgut gland as monitor organ for the nutritional value of diets in Penaeus monodon (Decapoda). Aquaculture 48:1–12Google Scholar
  160. Vogt G, Stöcker W, Storch V, Zwilling R (1989a) Biosynthesis of Astacus protease, a digestive enzyme from crayfish. Histochem 91:373–381Google Scholar
  161. Vogt G, Quinitio ET, Pascual FP (1989b) Interaction of the midgut gland and the ovary in vitellogenesis and consequences for the breeding success: a comparison of unablated and ablated spawners of Penaeus monodon. In: De Pauw N, Jaspers E, Ackefors H, Wilkins N (eds) Aquaculture – a biotechnology in progress. European Aquaculture Society, Bredene, pp 581–592Google Scholar
  162. Wägele J-W (1992) Isopoda. In: Harison FW, Humes AG (eds) Microscopic anatomy of invertebrates. Vol 9: Crustacea. Wiley-Liss, New York, pp 529–617Google Scholar
  163. Wägele J-W, Welsch U, Müller W (1981) Fine structure and function of the digestive tract of Cyathura carinata (Krøyer) (Crustacea, Isopoda). Zoomorphol 98:69–88Google Scholar
  164. Wang YC, Chang PS, Chen HY (2007) Tissue expressions of nine genes important to immune defence of the Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 23:1161–1177Google Scholar
  165. Warburg MR (1987) Isopods and their terrestrial environment. Adv Ecol Res 17:187–242Google Scholar
  166. Warburg MR, Rosenberg M (1989) Ultracytochemical identification of NA+, K+-ATPase activity in the isopodan hindgut epithelium. J Crust Biol 9:525–528Google Scholar
  167. Watling L (2013) Feeding and digestive system. In: Watling L, Thiel M (eds) The natural history of the Crustacea. Vol 1: functional morphology and diversity. Oxford University Press, New York, pp 237–260Google Scholar
  168. Wieser W (1966) Cooper and the role of isopods in degradation of organic matter. Science 153:67–69Google Scholar
  169. Wieser W, Klima J (1969) Compartmentalization of copper in the hepatopancreas of isopods. Mikroskopie 24:1–9Google Scholar
  170. Wolfe SH, Felgenhauer BE (1991) Mouthpart and foregut ontogeny in larval, postlarval, and juvenile spiny lobster, Panulirus argus Latreille (Decapoda, Palinuridae). Zool Scr 20:57–75Google Scholar
  171. Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564Google Scholar
  172. Zhang N, Song C, Wang M, Liu Y, Hui M, Cui Z (2017) Diversity and characterization of bacteria associated with the deep-sea hydrothermal vent crab Austinograea sp. comparing with those of two shallow-water crabs by 16S ribosomal DNA analysis. PLoS One 12:e0187842Google Scholar
  173. Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493Google Scholar
  174. Zimmer M, Topp W (1998) Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol 24:1397–1408Google Scholar
  175. Žnidaršič N, Štrus J, Drobne D (2003) Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress. Environ Toxicol Pharmacol 13:161–174Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.University of HeidelbergHeidelbergGermany

Personalised recommendations