Cell and Tissue Research

, Volume 377, Issue 3, pp 459–467 | Cite as

Enteroendocrine cells in the Echinodermata

  • José E. García-ArrarásEmail author
  • Monica Lefebre-Rivera
  • Sunny Qi-Huang


Enteroendocrine cells are endocrine-like cells found in the luminal epithelia of the digestive tract. These cells have been described in most animal phyla. In echinoderms, the cells have been described mainly in organisms of the class Asteroidea (sea stars) and Holothuroidea (sea cucumbers). Here, we describe what is known about the enteroendocrine cells of the Echinodermata, including the cell types, their distribution in the digestive tract, their neuropeptide content and their regeneration and compare them to what has been found in other animal species, mainly in vertebrates. We also discuss the newly described view of enteroendocrine cells as chemical sensors of the intestinal lumen and provide some histological evidence that similar functions might be found within the echinoderms. Finally, we describe the temporal regeneration of the enteroendocrine cells in the holothurian intestine.


Echinoderm Digestive tract Endocrine Neuropeptides Regeneration 



We would like to thank Ms. Griselle Valentin for editorial help and the preparation of the figures.


This project was funded by NIH (Grant R15NS01686). We also acknowledge partial support from NIH R21AG057974 and the University of Puerto Rico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Most data have been previously published and are available in the scientific literature. In the case of unpublished data applicable, international, national and/or institutional guidelines for the care and use of animals were followed.


  1. Bohórquez DV, Chandra R, Samsa L, Vigna S, Liddle R (2011) Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J Mol Histol 42:3–13CrossRefGoogle Scholar
  2. Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, Wang F, Liddle RA (2015) Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125(2):782–786CrossRefGoogle Scholar
  3. Bordi C, D’Adda T, Axxoni C, Ferraro G (2000) Classification of gastric endocrine cells at the light and electron microscopical levels. Microsc Res Tech 48(5):258–271CrossRefGoogle Scholar
  4. Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellot D, Olinski R, Hallböök F, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300(1):434–460CrossRefGoogle Scholar
  5. Cai W, Kim CH, Go HJ, Egertova M, Zampronio CG, Jones AM, Park NG, Elphick MR (2018) Biochemical, anatomical, and pharmacological characterization of calcitonin-type neuropeptides in starfish: discovery of an ancient role as muscle relaxants. Front Neurosci 12:382CrossRefGoogle Scholar
  6. Díaz-Balzac CA, Vázquez-Figueroa LD, García-Arrarás JE (2014) Novel markers identify nervous system components of the holothurian nervous system. Invertebr Neurosci 14(2):113–125CrossRefGoogle Scholar
  7. Díaz-Balzac CA, Lázaro-Peña MI, Vázquez-Figueroa LD, Díaz-Balzac RJ, García-Arrarás JE (2016) Holothurian nervous system diversity revealed by neuroanatomical of the sea urchin genome analysis. PLoS One 11(3):e0151129CrossRefGoogle Scholar
  8. Díaz-Miranda L, Blanco RE, García-Arrarás JE (1995) Localization of the heptapeptide GFSKLYFamide in the sea cucumber Holothuria glaberrima (Echinodermata): a light and electron microscopy study. J Comp Neurol 352:626–640CrossRefGoogle Scholar
  9. Diwakarla S, Fothegill LJ, Fakhry J, Callaghan J, Furness JB (2017) Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil 29(6).
  10. Elphick MR, Price DA, Lee TD, Thorndyke MC (1991) The SALMFamides: a new family of neuropeptides isolated from and echinoderm. Proc R Soc Lond 243:121–127CrossRefGoogle Scholar
  11. Fawcett DW (1994) Bloom and Fawcett, a textbook of histology. Chapman& Hall, NYGoogle Scholar
  12. Fothergill LJ, Furness JB (2018) Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification. Histochem Cell Biol 150:693–702CrossRefGoogle Scholar
  13. Furness JB (2006) The enteric nervous system. Blackwell Publishing, MassachusettsGoogle Scholar
  14. García-Arrarás JE, Díaz-Miranda L, Torres II, File S, Jiménez LB, Rivera-Bermudez K, Arroyo EJ, Cruz W (1999) Regeneration of the enteric nervous system in the sea cucumber Holothuria glaberrima. J Comp Neurol 406:461–475CrossRefGoogle Scholar
  15. García-Arrarás JE, Rojas-Soto M, Jiménez LB, Díaz-Miranda L (2001) The enteric nervous system of echinoderms: unexpected complexity revealed by neurochemical analysis. J Exp Biol 204:865–873Google Scholar
  16. Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20(1):14–21CrossRefGoogle Scholar
  17. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shin HN, Yilmaz O, Xavier RJ, Regev A (2017) A single-cell survey of the small intestinal epithelium. Nature 551:333–339Google Scholar
  18. Hinman VF, Burke RD (2018) Embryonic neurogenesis in echinoderms. Wiley Interdiscip Rev Dev Biol 7(4):e316CrossRefGoogle Scholar
  19. Inoue M, Birenheide R, Koisumi O, Kobayakawa Y, Muneoka Y, Motokawa T (1999) Localization of the neuropeptide NGIWYamide in the holothurian nervous system and its effects on muscular contraction. Proc R Soc B Biol Sci 266:993–1000CrossRefGoogle Scholar
  20. Kaelberer MM, Bohórquez DV (2018) The now and then of gut-brain signaling. Brain Res 1693:192–196CrossRefGoogle Scholar
  21. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV (2018) A gut-brain neural circuit for nutrient sensory transduction. Science 361(6408):eaat5236CrossRefGoogle Scholar
  22. Kim CH, Go HJ, Oh Y, Jo YH, Elphick MR, Park NG (2018) Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera. Mar Gen 37:92–96CrossRefGoogle Scholar
  23. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 28(5):620–630CrossRefGoogle Scholar
  24. Liddle RA (2019) Neuropods. Cell Mol Gastrol Hepatol In press.
  25. Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR (2017) Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: the anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J Comp Neurol 525(18):3890–3917CrossRefGoogle Scholar
  26. Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR (2018) Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens. J Comp Neurol 526:858–876CrossRefGoogle Scholar
  27. Martínez A, Villaro AC, Sesma P (1989) Microscopic study of the pyloric caeca of the starfish Marthasterias glacialis (Echinodermata): finding of endocrine cells. J Morphol 202:151–164CrossRefGoogle Scholar
  28. Martínez A, López J, Montuenga LM, Sesma P (1993) Regulatory peptides in the gut endocrine cells and nerves in the starfish Marthasterias glacialis. Cell Tissue Res 271:375–380CrossRefGoogle Scholar
  29. Martínez A, Riveros-Moreno V, Polak JM, Moncada S, Sesma P (1994) Nitric oxide (NO) synthase immunoreactivity in the starfish Marthasterias glacialis. Cell Tissue Res 275:599–603CrossRefGoogle Scholar
  30. Martínez A, Unsworth EJ, Cuttitta F (1996) Adrenomedullin-like immunoreactivity in the nervous system of the starfish Marthasterias glacialis. Cell Tissue Res 283:169–172CrossRefGoogle Scholar
  31. Mashanov VS, Zueva OR, Heinzeller T, Aschauer B, Dolmatov IY (2007) Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms. Evol Dev 9(3):244–256CrossRefGoogle Scholar
  32. Moore SJ, Thorndyke MC (1993) Immunocytochemical mapping of the novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. Cell Tissue Res 274:605–618CrossRefGoogle Scholar
  33. Newman SJ, Elphick MR, Thorndyke MC (1995) Tissue distribution of the SALMFamide neuropeptides S1 and S2 in the starfish Asterias rubens using novel monoclonal and polyclonal antibodies. I. Nervous and locomotory systems. Proc R Soc Lond B 261:139–143CrossRefGoogle Scholar
  34. Rowe ML, Elphick MR (2012) The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen Comp Endocrinol 179:331–344CrossRefGoogle Scholar
  35. Rowe ML, Achhala S, Elphick MR (2014) Neuropeptides and polypeptide hormones in echinoderms: new insights from analysis of the transcriptome fo the sea cucumber Apostichopus japonicus (2014). Gen Comp Endocrinol 197:43–55CrossRefGoogle Scholar
  36. Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR (2016) Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 6:150224CrossRefGoogle Scholar
  37. Sinagoga KL, McCauley HA, Múnera JO, Reynolds NA, Enriquez JR, Watson C, Yang HC, Helmrathe MA, Wells JM (2018) Deriving functional human enteroendocrine cells from pluripotent stem cells. Development 145(19):dev165795CrossRefGoogle Scholar
  38. Suwansa-ard S, Chaiyamoon A, Talarovicova A, Tinikul R, Tinikul Y, Poomtong T, Elphick MR, Cummins SF, Sobhon P (2018) Transcriptomic discovery and comparative analysis of neuropeptide precursors in sea cucumber (Holothuroidea). Peptides 99:231–240CrossRefGoogle Scholar
  39. Tian S, Egertová M, Elphick MR (2017) Functional characterization of paralogous gonadotropin-releasing hormone-type and corazonin-type neuropeptides in an echinoderm. Front Endocrinol 8:1–24CrossRefGoogle Scholar
  40. Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR (2018) Characterization of NGFFYamide signaling in starfish reveals roles in regulation of feeding behavior and locomotory systems. Front Endocrinol 9:507CrossRefGoogle Scholar
  41. Tossas K, Qi-Huang S, Cuyar E, García-Arrarás JE (2014) Temporal and spatial analysis of enteric system regeneration in the sea cucumber Holothuria glaberrima. Regeneration 1(3):10–26CrossRefGoogle Scholar
  42. Yañez-Guerra LA, Delroisse J, Barreiro-Iglesias A, Slade SE, Scrivens JH, Elphick MR (2018) Discovery and functional characterisation of a luqin-type neuropeptide signaling system in a deuterostoms. Sci Rep 8:7220CrossRefGoogle Scholar
  43. Zandawala M, Moghul I, Yañez-Guerra LA, Delroisse J, Abulkassimova N, Hugall AF, O’Hara TD, Elphick MR (2017) Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuorid echinoderms. Open Biol 7:170129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rio Piedras CampusUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations