Advertisement

Cell and Tissue Research

, Volume 377, Issue 3, pp 383–396 | Cite as

The C. elegans intestine: organogenesis, digestion, and physiology

  • Ivan Dimov
  • Morris F. MaduroEmail author
Review

Abstract

The comparatively simple Caenorhabditis elegans intestine fulfills many of the complex functions of the mammalian digestive tract, liver, and fat tissues, while also having roles in pathogen defense, immunity, and longevity. In this review, we describe the structure of the C. elegans gut and how it develops from the embryonic precursor E. We examine what is currently known about how the animal’s microbial diet is moved through the intestinal lumen, and how its enzymatic functions contribute to physiology and metabolism. The underlying gene regulatory networks behind both development and physiology are also described. Finally, we consider recent studies that examine metabolism and digestion and describe emerging areas for future work.

Keywords

Digestion Nematode Invertebrate Intestine Metabolism C. elegans 

Notes

Acknowledgments

We apologize to the many colleagues whose work we could not cite for space reasons. The light and fluorescence microscopy images in Fig. 1 were provided by Gina Broitman-Maduro.

Funding

Work done in the Maduro lab that was cited here was funded by NSF Grant IOS No. 1258054.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

References

  1. Ahringer J 2006. Reverse genetics (April 6, 2006). In: T.C.e.R. Community (ed.) WormBookGoogle Scholar
  2. Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Phys Cell Phys 297:C1071–C1081Google Scholar
  3. Altun ZF, Hall DH 2009. Alimentary system, intestine. WormAtlasGoogle Scholar
  4. Amrit FR, Steenkiste EM, Ratnappan R, Chen SW, McClendon TB, Kostka D, Yanowitz J, Olsen CP, Ghazi A (2016) DAF-16 and TCER-1 facilitate adaptation to germline loss by restoring lipid homeostasis and repressing reproductive physiology in C. elegans. PLoS Genet 12:e1005788Google Scholar
  5. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893Google Scholar
  6. Androwski RJ, Flatt KM, Schroeder NE, 2017. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer Wiley Interdiscip Rev Dev Biol 6Google Scholar
  7. Arda HE, Taubert S, MacNeil LT, Conine CC, Tsuda B, Van Gilst M, Sequerra R, Doucette-Stamm L, Yamamoto KR, Walhout AJ (2010) Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol Syst Biol 6:367Google Scholar
  8. Artyukhin AB, Zhang YK, Akagi AE, Panda O, Sternberg PW, Schroeder FC (2018) Metabolomic “dark matter” dependent on peroxisomal beta-oxidation in Caenorhabditis elegans. J Am Chem Soc 140:2841–2852Google Scholar
  9. Asan A, Raiders SA, Priess JR (2016) Morphogenesis of the C elegans intestine involves axon guidance genes. PLoS Genet 12:e1005950Google Scholar
  10. Ashe A, Belicard T, Le Pen J, Sarkies P, Frezal L, Lehrbach NJ, Felix MA, Miska EA (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2:e00994Google Scholar
  11. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP (2010) PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–532Google Scholar
  12. Bender A, Woydziak ZR, Fu L, Branden M, Zhou Z, Ackley BD, Peterson BR (2013) Novel acid-activated fluorophores reveal a dynamic wave of protons in the intestine of Caenorhabditis elegans. ACS Chem Biol 8:636–642Google Scholar
  13. Block DH, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TY, Shapira M (2015) The developmental intestinal regulator ELT-2 controls p38-dependent immune responses in Adult C. elegans. PLoS Genet 11:e1005265Google Scholar
  14. Braeckman BP, Houthoofd K, Vanfleteren JR, 2009. Intermediary metabolism. WormBook, 1–24Google Scholar
  15. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94Google Scholar
  16. Broitman-Maduro G, Maduro MF, Rothman JH (2005) The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm. Dev Cell 8:427–433Google Scholar
  17. Bruce RG (1966) The fine structure of the intestine and hind gut of the larva of Trichinella spiralis. Parasitology 56:359–365Google Scholar
  18. Buchon N, Osman D (2015) All for one and one for all: regionalization of the Drosophila intestine. Insect Biochem Mol Biol 67:2–8Google Scholar
  19. Byers JR, Anderson RV (1973) Morphology and ultrastructure of the intestine in a plant-parasitic nematode, Tylenchorhynchus dubius. J Nematol 5:28–37Google Scholar
  20. Campbell EM, Fares H (2010) Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11:40Google Scholar
  21. Celen I, Doh JH, Sabanayagam CR (2018) Effects of liquid cultivation on gene expression and phenotype of C elegans. BMC Genomics 19:562Google Scholar
  22. Chakraborty K, Leung K, Krishnan Y (2017) High lumenal chloride in the lysosome is critical for lysosome function. Elife 6:e28862Google Scholar
  23. Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17:1286–1297Google Scholar
  24. Chen D, Li PW, Goldstein BA, Cai W, Thomas EL, Chen F, Hubbard AE, Melov S, Kapahi P (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5:1600–1610Google Scholar
  25. Choi H, Broitman-Maduro G, Maduro MF (2017) Partially compromised specification causes stochastic effects on gut development in C. elegans. Dev Biol 427:49–60Google Scholar
  26. Chughtai AA, Kassak F, Kostrouchova M, Novotny JP, Krause MW, Saudek V, Kostrouch Z (2015) Perilipin-related protein regulates lipid metabolism in C elegans. PeerJ 3:e1213Google Scholar
  27. Clucas C, Cabello J, Bussing I, Schnabel R, Johnstone IL (2002) Oncogenic potential of a C. elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J 21:665–674Google Scholar
  28. Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, Edwards SA, Fischer G, Davidson A, Pryor RE, Stevens A, Slack FJ, Tavernarakis N, Braeckman BP, Schroeder FC, Nehrke K, Gems D (2013) Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C elegans. PLoS Biol 11:e1001613Google Scholar
  29. Coburn C, Gems D (2013) The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Front Genet 4:151Google Scholar
  30. Colley FC (1970) Strongyloides myopotomi: fine structure of the body wall and alimentary tract of the adult and third-stage larva. Exp Parasitol 28:420–434Google Scholar
  31. Copic A, Antoine-Bally S, Gimenez-Andres M, La Torre Garay C, Antonny B, Manni MM, Pagnotta S, Guihot J, Jackson CL (2018) A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat Commun 9:1332Google Scholar
  32. Coroian C, Broitman-Maduro G, Maduro MF (2005) Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Dev Biol 289:444–455Google Scholar
  33. Couthier A, Smith J, McGarr P, Craig B, Gilleard JS (2004) Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 133:241–253Google Scholar
  34. Cypser JR, Kitzenberg D, Park SK (2013) Dietary restriction in C. elegans: recent advances. Exp Gerontol 48:1014–1017Google Scholar
  35. Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, Mader S, Petersen C, Kowallik V, Rosenstiel P, Felix MA, Schulenburg H (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol 14:38Google Scholar
  36. Ezcurra M, Benedetto A, Sornda T, Gilliat AF, Au C, Zhang Q, van Schelt S, Petrache AL, Wang H, Guardia Y, Bar-Nun S, Tyler E, Wakelam MJ, Gems D (2018) C elegans eats its own intestine to make yolk leading to multiple senescent pathologies. Curr Biol 28:3352Google Scholar
  37. Fouad AD, Pu SH, Teng S, Mark JR, Fu M, Zhang K, Huang J, Raizen DM, Fang-Yen C (2017) Quantitative assessment of fat levels in Caenorhabditis elegans using dark field microscopy. G3 (Bethesda) 7:1811–1818Google Scholar
  38. Fukushige T, Hawkins MG, McGhee JD (1998) The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 198:286–302Google Scholar
  39. Gammon DB, Ishidate T, Li L, Gu W, Silverman N, Mello CC (2017) The antiviral RNA interference response provides resistance to lethal arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr Biol 27:795–806Google Scholar
  40. Gebauer J, Gentsch C, Mansfeld J, Schmeisser K, Waschina S, Brandes S, Klimmasch L, Zamboni N, Zarse K, Schuster S, Ristow M, Schauble S, Kaleta C (2016) A genome-scale database and reconstruction of Caenorhabditis elegans metabolism. Cell Syst 2:312–322Google Scholar
  41. Gehart H, Clevers H (2018) Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16:19–34Google Scholar
  42. Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal autophagy improves healthspan and longevity in C elegans during dietary restriction. PLoS Genet 12:e1006135Google Scholar
  43. Gerbaba TK, Green-Harrison L, Buret AG (2017) Modeling host-microbiome interactions in Caenorhabditis elegans. J Nematol 49:348–356Google Scholar
  44. Ghafouri S, McGhee JD (2007) Bacterial residence time in the intestine of Caenorhabditis elegans. Nematology 9:87–91Google Scholar
  45. Gillis WJ, Bowerman B, Schneider SQ (2007) Ectoderm- and endomesoderm-specific GATA transcription factors in the marine annelid Platynereis dumerilli. Evol Dev 9:39–50Google Scholar
  46. Gobel V, Barrett PL, Hall DH, Fleming JT (2004) Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev Cell 6:865–873Google Scholar
  47. Goh GY, Martelli KL, Parhar KS, Kwong AW, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13:70–79Google Scholar
  48. Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S (2018) NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 17:e12743Google Scholar
  49. Goldstein B (1992) Induction of gut in Caenorhabditis elegans embryos. Nature 357:255–257Google Scholar
  50. Goldstein B (1993) Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions. Development 118:1267–1277Google Scholar
  51. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326Google Scholar
  52. Gravato-Nobre MJ, Vaz F, Filipe S, Chalmers R, Hodgkin J (2016) The invertebrate lysozyme effector ILYS-3 is systemically activated in response to danger signals and confers antimicrobial protection in C. elegans. PLoS Pathog 12:e1005826Google Scholar
  53. Haag ES, Fitch DHA, Delattre M (2018) From “the worm” to “the worms” and back again: the evolutionary developmental biology of nematodes. Genetics 210:397–433Google Scholar
  54. Hashani M, Witzel HR, Pawella LM, Lehmann-Koch J, Schumacher J, Mechtersheimer G, Schnolzer M, Schirmacher P, Roth W, Straub BK (2018) Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations. Cell Tissue Res 374:121–136Google Scholar
  55. Hermann GJ, Scavarda E, Weis AM, Saxton DS, Thomas LL, Salesky R, Somhegyi H, Curtin TP, Barrett A, Foster OK, Vine A, Erlich K, Kwan E, Rabbitts BM, Warren K (2012) C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLoS One 7:e43043Google Scholar
  56. Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, Grant BD, Priess JR (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16:3273–3288Google Scholar
  57. Hevelone J, Hartman PS (1988) An endonuclease from Caenorhabditis elegans: partial purification and characterization. Biochem Genet 26:447–461Google Scholar
  58. Hieb WF, Rothstein M (1968) Sterol requirement for reproduction of a free-living nematode. Science 160:778–780Google Scholar
  59. Hochbaum D, Zhang Y, Stuckenholz C, Labhart P, Alexiadis V, Martin R, Knolker HJ, Fisher AL (2011) DAF-12 regulates a connected network of genes to ensure robust developmental decisions. PLoS Genet 7:e1002179Google Scholar
  60. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366Google Scholar
  61. Hu Q, D’Amora DR, MacNeil LT, Walhout AJM, Kubiseski TJ (2018) The Caenorhabditis elegans oxidative stress response requires the NHR-49 transcription factor. G3 (Bethesda) 8:3857–3863Google Scholar
  62. Hung WL, Wang Y, Chitturi J, Zhen M (2014) A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development 141:1767–1779Google Scholar
  63. Hutter H (2012) Fluorescent protein methods: strategies and applications. Methods Cell Biol 107:67–92Google Scholar
  64. Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3:597–599Google Scholar
  65. Jiang H, Wang D (2018) The microbial zoo in the C. elegans intestine: bacteria, fungi and viruses. Viruses 10:E85Google Scholar
  66. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: caenorhabditis elegans. Nat Rev Genet 3:356–369Google Scholar
  67. Kadayifci FZ, Zheng S, Pan YX (2018) Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci 19:4055Google Scholar
  68. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:RESEARCH0002Google Scholar
  69. Kandasamy S, Khan W, Evans F, Critchley AT, Prithiviraj B (2012) Tasco(R): a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Mar Drugs 10:84–105Google Scholar
  70. Kanzaki N, Tsai IJ, Tanaka R, Hunt VL, Liu D, Tsuyama K, Maeda Y, Namai S, Kumagai R, Tracey A, Holroyd N, Doyle SR, Woodruff GC, Murase K, Kitazume H, Chai C, Akagi A, Panda O, Ke HM, Schroeder FC, Wang J, Berriman M, Sternberg PW, Sugimoto A, Kikuchi T (2018) Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat Commun 9:3216Google Scholar
  71. Kaplan REW, Maxwell CS, Codd NK, Baugh LR (2018) Pervasive positive and negative feedback regulation of insulin-like signaling in Caenorhabditis elegans. GeneticsGoogle Scholar
  72. Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783Google Scholar
  73. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464Google Scholar
  74. Khan F, Jain S, Oloketuyi SF (2018) Bacteria and bacterial products: foe and friends to Caenorhabditis elegans. Microbiol Res 215:102–113Google Scholar
  75. Kimble J, Sharrock WJ (1983) Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 96:189–196Google Scholar
  76. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946Google Scholar
  77. Kiontke K, Sudhaus W 2006. Ecology of Caenorhabditis species. WormBook, 1–14Google Scholar
  78. Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11:339Google Scholar
  79. Kormish JD, Gaudet J, McGhee JD (2010) Development of the C. elegans digestive tract. Curr Opin Genet Dev 20:346–354Google Scholar
  80. Kostic I, Roy R (2002) Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129:2155–2165Google Scholar
  81. Kramer JM 2005. Basement membranes. WormBook, 1–15Google Scholar
  82. Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514Google Scholar
  83. Lapierre LR, Silvestrini MJ, Nunez L, Ames K, Wong S, Le TT, Hansen M, Melendez A (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9:278–286Google Scholar
  84. Laurent V, Brooks DR, Coates D, Isaac RE (2001) Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur J Biochem 268:5430–5438Google Scholar
  85. Lee D, Anya A (1968) Studies on the movement, the cytology and the associated micro-organisms of the intestine of Aspiculuris tetraptera (Nematoda). J Zool 156:9–14Google Scholar
  86. Lee YU, Son M, Kim J, Shim YH, Kawasaki I (2016) CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions. Cell Cycle 15:654–666Google Scholar
  87. Lemieux GA, Ashrafi K (2015) Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 50:69–84Google Scholar
  88. Lenaerts I, Walker GA, Van Hoorebeke L, Gems D, Vanfleteren JR (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol A Biol Sci Med Sci 63:242–252Google Scholar
  89. Lentjes MH, Niessen HE, Akiyama Y, de Bruine AP, Melotte V, van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18:e3Google Scholar
  90. Leung B, Hermann GJ, Priess JR (1999) Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 216:114–134Google Scholar
  91. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145Google Scholar
  92. Lin KT, Broitman-Maduro G, Hung WW, Cervantes S, Maduro MF (2009) Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 325:296–306Google Scholar
  93. Lin R, Thompson S, Priess JR (1995) Pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83:599–609Google Scholar
  94. Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR 3rd, Ruvkun G, Riedel CG (2018) DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 9:4400Google Scholar
  95. Liu H, Wang S, Hang W, Gao J, Zhang W, Cheng Z, Yang C, He J, Zhou J, Chen J, Shi A (2018) LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J Cell Biol 217:299–314Google Scholar
  96. Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040–1043Google Scholar
  97. Macneil LT, Walhout AJ (2013) Food, pathogen, signal: the multifaceted nature of a bacterial diet. Worm 2:e26454Google Scholar
  98. MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153:240–252Google Scholar
  99. MacQueen AJ, Baggett JJ, Perumov N, Bauer RA, Januszewski T, Schriefer L, Waddle JA (2005) ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16:3247–3259Google Scholar
  100. Maduro M, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess J, Rothman J (2005) Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev Biol 284:509–522Google Scholar
  101. Maduro MF (2017) Gut development in C. elegans. Semin Cell Dev Biol 66:3–11Google Scholar
  102. Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH (2001) Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 7:475–485Google Scholar
  103. Magner DB, Wollam J, Shen Y, Hoppe C, Li D, Latza C, Rottiers V, Hutter H, Antebi A (2013) The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans. Cell Metab 18:212–224Google Scholar
  104. Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214Google Scholar
  105. Mango SE (2009) The molecular basis of organ formation: insights from the C. elegans foregut. Annu Rev Cell Dev Biol 25:597–628Google Scholar
  106. Martin J, Abubucker S, Heizer E, Taylor CM, Mitreva M (2012) Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data. Nucleic Acids Res 40:D720–D728Google Scholar
  107. McCormick M, Chen K, Ramaswamy P, Kenyon C (2011) New genes that extend Caenorhabditis elegans' lifespan in response to reproductive signals. Aging Cell 11:192–202Google Scholar
  108. McGee MD, Weber D, Day N, Vitelli C, Crippen D, Herndon LA, Hall DH, Melov S (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10:699–710Google Scholar
  109. McGhee JD 2007. The C. elegans intestine. WormBook, 1-36Google Scholar
  110. McGhee JD, Fukushige T, Krause MW, Minnema SE, Goszczynski B, Gaudet J, Kohara Y, Bossinger O, Zhao Y, Khattra J, Hirst M, Jones SJ, Marra MA, Ruzanov P, Warner A, Zapf R, Moerman DG, Kalb JM (2009) ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 327:551–565Google Scholar
  111. McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJ, Moerman DG, Robertson AG (2007) The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 302:627–645Google Scholar
  112. Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210:357–396Google Scholar
  113. Mohrlen F, Hutter H, Zwilling R (2003) The astacin protein family in Caenorhabditis elegans. Eur J Biochem 270:4909–4920Google Scholar
  114. Moreno-Arriola E, El Hafidi M, Ortega-Cuellar D, Carvajal K (2016) AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators. PLoS One 11:e0148089Google Scholar
  115. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318Google Scholar
  116. Murakami R, Okumura T, Uchiyama H (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Develop Growth Differ 47:581–589Google Scholar
  117. Murphy CT, Hu PJ 2013. Insulin/insulin-like growth factor signaling in C. elegans. WormBook, 1-43Google Scholar
  118. Narayanaswamy N, Chakraborty K, Saminathan A, Zeichner E, Leung K, Devany J, Krishnan Y (2018) A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat Methods 16:95–102Google Scholar
  119. Nehrke K, Denton J, Mowrey W (2008) Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Phys Cell Phys 294:C333–C344Google Scholar
  120. Nuez I, Felix MA (2012) Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PLoS One 7:e29811Google Scholar
  121. O'Rourke EJ, Soukas AA, Carr CE, Ruvkun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10:430–435Google Scholar
  122. Okkema PG, Harrison SW, Plunger V, Aryana A, Fire A (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135:385–404Google Scholar
  123. Okumura T, Matsumoto A, Tanimura T, Murakami R (2005) An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. Dev Biol 278:576–586Google Scholar
  124. Owraghi M, Broitman-Maduro G, Luu T, Roberson H, Maduro MF (2010) Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Dev Biol 340:209–221Google Scholar
  125. Palgunow D, Klapper M, Doring F (2012) Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 7:e46198Google Scholar
  126. Panda O, Akagi AE, Artyukhin AB, Judkins JC, Le HH, Mahanti P, Cohen SM, Sternberg PW, Schroeder FC (2017) Biosynthesis of modular Ascarosides in C. elegans. Angew Chem Int Ed Eng 56:4729–4733Google Scholar
  127. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498Google Scholar
  128. Peres TV, Arantes LP, Miah MR, Bornhorst J, Schwerdtle T, Bowman AB, Leal RB, Aschner M (2018) Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in manganese toxicity. Neurotox Res 34:584–596Google Scholar
  129. Pukkila-Worley R, Ausubel FM (2012) Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 24:3–9Google Scholar
  130. Rasmussen JP, Feldman JL, Reddy SS, Priess JR (2013) Cell interactions and patterned intercalations shape and link epithelial tubes in C elegans. PLoS Genet 9:e1003772Google Scholar
  131. Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A (2014) Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet 10:e1004829Google Scholar
  132. Rauthan M, Pilon M (2011) The mevalonate pathway in C elegans. Lipids Health Dis 10:243Google Scholar
  133. Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287Google Scholar
  134. Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100:274–282Google Scholar
  135. Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716Google Scholar
  136. Roh HC, Collier S, Guthrie J, Robertson JD, Kornfeld K (2012) Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab 15:88–99Google Scholar
  137. Rosa BA, Jasmer DP, Mitreva M (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl Trop Dis 8:e2678Google Scholar
  138. Sato K, Norris A, Sato M, Grant BD, 2014. C. elegans as a model for membrane traffic. WormBook, 1-47Google Scholar
  139. Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12:261–272Google Scholar
  140. Seymour MK, Wright KA, Doncaster CC (1983) The action of the anterior feeding apparatus of Caenorhabditis elegans (Nematoda: Rhabditida). J Zool 201:527–539Google Scholar
  141. Sheng M, Hosseinzadeh A, Muralidharan SV, Gaur R, Selstam E, Tuck S (2015) Aberrant fat metabolism in Caenorhabditis elegans mutants with defects in the defecation motor program. PLoS One 10:e0124515Google Scholar
  142. Shetty P, Lo MC, Robertson SM, Lin R (2005) C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 285:584–592Google Scholar
  143. Shin TH, Yasuda J, Rocheleau CE, Lin R, Soto M, Bei Y, Davis RJ, Mello CC (1999) MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol Cell 4:275–280Google Scholar
  144. Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, Pak SC (2009) Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res 65:10–18Google Scholar
  145. Sommermann EM, Strohmaier KR, Maduro MF, Rothman JH (2010) Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification → differentiation transition. Dev Biol 347:154–166Google Scholar
  146. Song BM, Avery L (2013) The pharynx of the nematode C elegans: a model system for the study of motor control. Worm 2:e21833Google Scholar
  147. Spence JR, Lauf R, Shroyer NF (2011) Vertebrate intestinal endoderm development. Dev Dyn 240:501–520Google Scholar
  148. Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK, 2015. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. Elife 4Google Scholar
  149. Stiernagle T, 2006. Maintenance of C. elegans. WormBook, 1–11Google Scholar
  150. Sullivan-Brown JL, Tandon P, Bird KE, Dickinson DJ, Tintori SC, Heppert JK, Meserve JH, Trogden KP, Orlowski SK, Conlon FL, Goldstein B (2016) Identifying regulators of morphogenesis common to vertebrate neural tube closure and Caenorhabditis elegans gastrulation. Genetics 202:123–139Google Scholar
  151. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119Google Scholar
  152. Tan MW, Shapira M (2011) Genetic and molecular analysis of nematode-microbe interactions. Cell Microbiol 13:497–507Google Scholar
  153. Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A (2016) Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biol 17:4Google Scholar
  154. Tarr DE (2012) Distribution and characteristics of ABFs, cecropins, nemapores, and lysozymes in nematodes. Dev Comp Immunol 36:502–520Google Scholar
  155. Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20:1137–1149Google Scholar
  156. Tauffenberger A, Parker JA (2014) Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet 10:e1004346Google Scholar
  157. Tcherepanova I, Bhattacharyya L, Rubin CS, Freedman JH (2000) Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1. J Biol Chem 275:26359–26369Google Scholar
  158. Teramoto T, Iwasaki K (2006) Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium 40:319–327Google Scholar
  159. Thomas JH (1990) Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124:855–872Google Scholar
  160. Thorpe CJ, Schlesinger A, Bowerman B (2000) Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol 10:10–17Google Scholar
  161. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854Google Scholar
  162. Troemel ER, Felix MA, Whiteman NK, Barriere A, Ausubel FM (2008) Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 6:2736–2752Google Scholar
  163. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119Google Scholar
  164. Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3:e53Google Scholar
  165. Vinci G, Xia X, Veitia RA (2008) Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses. PLoS One 3:e2883Google Scholar
  166. von Reuss SH (2018) Exploring modular glycolipids involved in nematode chemical communication. Chimia (Aarau) 72:297–303Google Scholar
  167. von Reuss SH, Schroeder FC (2015) Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Nat Prod Rep 32:994–1006Google Scholar
  168. Waaijers S, Boxem M (2014) Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods 68:381–388Google Scholar
  169. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960Google Scholar
  170. Watson E, Walhout AJ (2014) Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy. Trends Endocrinol Metab 25:502–508Google Scholar
  171. Watts JL, Ristow M (2017) Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics 207:413–446Google Scholar
  172. Whangbo JS, Weisman AS, Chae J, Hunter CP (2017) SID-1 domains important for dsRNA import in Caenorhabditis elegans. G3 (Bethesda) 7:3887–3899Google Scholar
  173. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340Google Scholar
  174. Wiesenfahrt T, Berg JY, Nishimura EO, Robinson AG, Goszczynski B, Lieb JD, McGhee JD (2015) The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm. Development 143:483–491Google Scholar
  175. Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci U S A 104:10565–10570Google Scholar
  176. Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, van Weeghel M, Gao AW, Wakelam MJO, Houtkooper RH, Mains A, Le Novere N, Sadykoff S, Schroeder F, Lewis NE, Schirra HJ, Kaleta C, Casanueva O (2018) Modeling meets metabolomics—the WormJam consensus model as basis for metabolic studies in the model organism Caenorhabditis elegans. Front Mol Biosci 5:96Google Scholar
  177. Woodruff GC, Phillips PC (2018) Field studies reveal a close relative of C elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps. BMC Ecol 18:26Google Scholar
  178. Wylie T, Martin J, Abubucker S, Yin Y, Messina D, Wang Z, McCarter JP, Mitreva M (2008) NemaPath: online exploration of KEGG-based metabolic pathways for nematodes. BMC Genomics 9:525Google Scholar
  179. Xiao R, Chun L, Ronan EA, Friedman DI, Liu J, Xu XZ (2015) RNAi interrogation of dietary modulation of development, metabolism, behavior, and aging in C. elegans. Cell Rep 11:1123–1133Google Scholar
  180. Yilmaz LS, Walhout AJ (2016) A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst 2:297–311Google Scholar
  181. Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, Jasmer DP, Mitreva M (2008) Intestinal transcriptomes of nematodes: comparison of the parasites Ascaris suum and Haemonchus contortus with the free-living Caenorhabditis elegans. PLoS Negl Trop Dis 2:e269Google Scholar
  182. Yokota S, Togo SH, Maebuchi M, Bun-Ya M, Haraguchi CM, Kamiryo T (2002) Peroxisomes of the nematode Caenorhabditis elegans: distribution and morphological characteristics. Histochem Cell Biol 118:329–336Google Scholar
  183. Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2011a) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201Google Scholar
  184. Zhang H, Kim A, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2012) Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 139:2071–2083Google Scholar
  185. Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X, Siddiqui SS, Hashmi S (2011b) Regulation of fat storage and reproduction by Kruppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans. J Mol Biol 411:537–553Google Scholar
  186. Zhang J, Holdorf AD, Walhout AJ (2017a) C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Curr Opin Biotechnol 46:74–80Google Scholar
  187. Zhang SO, Box AC, Xu N, Le Men J, Yu J, Guo F, Trimble R, Mak HY (2010) Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:4640–4645Google Scholar
  188. Zhang YK, Sanchez-Ayala MA, Sternberg PW, Srinivasan J, Schroeder FC (2017b) Improved synthesis for modular Ascarosides uncovers biological activity. Org Lett 19:2837–2840Google Scholar
  189. Zhao Y, Long L, Xu W, Campbell RF, Large EE, Greene JS, McGrath, P.T., 2018. Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain. Elife 7Google Scholar
  190. Zhou Y, Wang Y, Zhang X, Bhar S, Jones Lipinski RA, Han J, Feng L, Butcher RA (2018) Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C elegans. Elife 7:e33286Google Scholar
  191. Zhu G, Yin F, Wang L, Wei W, Jiang L, Qin J (2016) Modeling type 2 diabetes-like hyperglycemia in C. elegans on a microdevice. Integr Biol (Camb) 8:30–38Google Scholar
  192. Zhu J, Hill RJ, Heid PJ, Fukuyama M, Sugimoto A, Priess JR, Rothman JH (1997) End-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 11:2883–2896Google Scholar
  193. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate Program in Cell, Molecular and Developmental BiologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of Molecular, Cell and Systems BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations