Advertisement

Cell and Tissue Research

, Volume 377, Issue 1, pp 59–71 | Cite as

Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression

  • Jennifer KauflingEmail author
Review

Abstract

Depression is one of the most prevalent psychiatric diseases, affecting the quality of life of millions of people. Ventral tegmental area (VTA) dopaminergic (DA) neurons are notably involved in evaluating the emotional and motivational value of a stimulus, in detecting reward prediction errors, in motivated learning, or in the propensity to initiate or withhold an action. DA neurons are thus involved in psychopathologies associated with perturbations of emotional and motivational states, such as depression. In this review, we focus on adaptations/alterations of the VTA, particularly of the VTA DA neurons, in the three most frequently used animal models of depression: learned helplessness, chronic mild stress and chronic social defeat.

Keywords

Ventral tegmental area Dopamine Depression Social stress Environmental stress 

Notes

Acknowledgments

We thank Dr. Barrot, Dr. Yalcin and Dr. Massotte (INCI CNRS UPR 2312) for critical comments on the manuscript.

Funding information

This work was supported by the CNRS (contract UPR3212), Université de Strasbourg and Strasbourg Neuropôle.

References

  1. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric AssociationGoogle Scholar
  2. Anacker C, Scholz J, O’Donnell KJ, Allemang-Grand R, Diorio J, Bagot RC, Nestler EJ, Hen R, Lerch JP, Meaney MJ (2016) Neuroanatomic differences associated with stress susceptibility and resilience. Biol Psychiatry 79:840–849.  https://doi.org/10.1016/J.BIOPSYCH.2015.08.009 CrossRefGoogle Scholar
  3. Bass CE, Grinevich VP, Gioia D, Day-Brown JD, Bonin KD, Stuber GD, Weiner JL, Budygin EA (2013) Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front Behav Neurosci 7:173.  https://doi.org/10.3389/fnbeh.2013.00173 CrossRefGoogle Scholar
  4. Belujon P, Grace AA (2014a) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936.  https://doi.org/10.1016/j.biopsych.2014.04.014 CrossRefGoogle Scholar
  5. Belujon P, Grace AA (2014b) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936.  https://doi.org/10.1016/j.biopsych.2014.04.014 CrossRefGoogle Scholar
  6. Belujon P, Grace AA (2014c) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936.  https://doi.org/10.1016/J.BIOPSYCH.2014.04.014 CrossRefGoogle Scholar
  7. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20:1036–1046.  https://doi.org/10.1093/ijnp/pyx056 CrossRefGoogle Scholar
  8. Bertaina-Anglade V, La Rochelle CD, Scheller DKA (2006) Antidepressant properties of rotigotine in experimental models of depression. Eur J Pharmacol 548:106–114.  https://doi.org/10.1016/j.ejphar.2006.07.022 CrossRefGoogle Scholar
  9. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868.  https://doi.org/10.1126/science.1120972 CrossRefGoogle Scholar
  10. Besson A, Privat AM, Eschalier A, Fialip J (1998) Reversal of learned helplessness by morphine in rats: involvement of a dopamine mediation. Pharmacol Biochem Behav 60:519–525CrossRefGoogle Scholar
  11. Bourdy R, Barrot M (2012) A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 35:681–690.  https://doi.org/10.1016/J.TINS.2012.06.007
  12. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834.  https://doi.org/10.1016/j.neuron.2010.11.022 CrossRefGoogle Scholar
  13. Cahill CM, Taylor AM (2017) Neuroinflammation-a co-occurring phenomenon linking chronic pain and opioid dependence. Curr Opin Behav Sci 13:171–177.  https://doi.org/10.1016/j.cobeha.2016.12.003 CrossRefGoogle Scholar
  14. Cao J-L, Covington HE, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han M-H, Han M-H (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30:16453–16458.  https://doi.org/10.1523/JNEUROSCI.3177-10.2010 CrossRefGoogle Scholar
  15. Chang C-H, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76:223–230.  https://doi.org/10.1016/j.biopsych.2013.09.020 CrossRefGoogle Scholar
  16. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai H-C, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han M-H (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536.  https://doi.org/10.1038/nature11713 CrossRefGoogle Scholar
  17. Chaudhury D, Liu H, Han M-H (2015) Neuronal correlates of depression. Cell Mol Life Sci 72:4825–4848.  https://doi.org/10.1007/s00018-015-2044-6 CrossRefGoogle Scholar
  18. Chen L, Lodge DJ (2013) The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons. J Neurophysiol 110:2287–2294.  https://doi.org/10.1152/jn.00307.2013 CrossRefGoogle Scholar
  19. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313.  https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997 CrossRefGoogle Scholar
  20. Czéh B, Fuchs E, Wiborg O, Simon M (2016) Animal models of major depression and their clinical implications. Prog Neuro-Psychopharmacol Biol Psychiatry 64:293–310.  https://doi.org/10.1016/J.PNPBP.2015.04.004 CrossRefGoogle Scholar
  21. Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten IB, Deisseroth K, Tepper JM, Bolam JP, Gerdjikov TV, Mena-Segovia J (2016) Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 19:1025–1033.  https://doi.org/10.1038/nn.4335 CrossRefGoogle Scholar
  22. Drugan RC, Basile AS, Ha JH, Healy D, Ferland RJ (1997) Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Brain Res Protoc 2:69–74CrossRefGoogle Scholar
  23. Duterte-Boucher D, Leclère JF, Panissaud C, Costentin J (1988) Acute effects of direct dopamine agonists in the mouse behavioral despair test. Eur J Pharmacol 154:185–190CrossRefGoogle Scholar
  24. Faivre F, Joshi A, Bezard E, Barrot M (2018) The hidden side of Parkinson’s disease: studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev.  https://doi.org/10.1016/j.neubiorev.2018.10.004
  25. Faure P, Tolu S, Valverde S, Naudé J (2014) Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 282:86–100.  https://doi.org/10.1016/J.NEUROSCIENCE.2014.05.040 CrossRefGoogle Scholar
  26. Fernandez SP, Broussot L, Marti F, Contesse T, Mouska X, Soiza-Reilly M, Marie H, Faure P, Barik J (2018) Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors. Nat Commun 9:4449.  https://doi.org/10.1038/s41467-018-06809-7 CrossRefGoogle Scholar
  27. Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, Whiteford HA (2013) Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med 43:471–481.  https://doi.org/10.1017/S0033291712001511 CrossRefGoogle Scholar
  28. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, Dietz DM, Pan N, Vialou VF, Neve RL, Yue Z, Han M-H (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319.  https://doi.org/10.1126/science.1249240 CrossRefGoogle Scholar
  29. Friedman AK, Juarez B, Ku SM, Zhang H, Calizo RC, Walsh JJ, Chaudhury D, Zhang S, Hawkins A, Dietz DM, Murrough JW, Ribadeneira M, Wong EH, Neve RL, Han M-H (2016) KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat Commun 7:11671.  https://doi.org/10.1038/ncomms11671 CrossRefGoogle Scholar
  30. Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743.  https://doi.org/10.1523/JNEUROSCI.0012-07.2007 CrossRefGoogle Scholar
  31. Hammack SE, Cooper MA, Lezak KR (2012) Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology 62:565–575.  https://doi.org/10.1016/j.neuropharm.2011.02.024 CrossRefGoogle Scholar
  32. Han M-H, Nestler EJ (2017) Neural substrates of depression and resilience. Neurotherapeutics 14:677–686.  https://doi.org/10.1007/s13311-017-0527-x CrossRefGoogle Scholar
  33. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O (2011) Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 31:11457–11471.  https://doi.org/10.1523/JNEUROSCI.1384-11.2011 CrossRefGoogle Scholar
  34. Isingrini E, Perret L, Rainer Q, Amilhon B, Guma E, Tanti A, Martin G, Robinson J, Moquin L, Marti F, Mechawar N, Williams S, Gratton A, Giros B (2016) Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat Neurosci 19:560–563.  https://doi.org/10.1038/nn.4245 CrossRefGoogle Scholar
  35. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci U S A 108:16446–16450.  https://doi.org/10.1073/pnas.1105418108 CrossRefGoogle Scholar
  36. Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468CrossRefGoogle Scholar
  37. Johnston CE, Herschel DJ, Lasek AW, Hammer RP, Nikulina EM, Nikulina EM (2015) Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor. Neuropharmacology 89:325–334.  https://doi.org/10.1016/j.neuropharm.2014.10.010 CrossRefGoogle Scholar
  38. Katz RJ (1982) Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 16:965–968CrossRefGoogle Scholar
  39. Kaufling J, Aston-Jones G (2015) Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J Neurosci 35:10290–10303.  https://doi.org/10.1523/JNEUROSCI.0715-15.2015 CrossRefGoogle Scholar
  40. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2010) gamma-Aminobutyric acid cells with cocaine-induced DeltaFosB in the ventral tegmental area innervate mesolimbic neurons. Biol Psychiatry 67:88–92.  https://doi.org/10.1016/j.biopsych.2009.08.001 CrossRefGoogle Scholar
  41. Kaufling J, Girard D, Maitre M, Leste-Lasserre T, Georges F (2017) Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway. Eur J Neurosci 45:1230–1240.  https://doi.org/10.1111/ejn.13554 CrossRefGoogle Scholar
  42. Kim EJ, Bahk Y-C, Oh H, Lee W-H, Lee J-S, Choi K-H (2018) Current status of cognitive remediation for psychiatric disorders: a review. Front Psychiatry 9:461.  https://doi.org/10.3389/fpsyt.2018.00461 CrossRefGoogle Scholar
  43. Knowland D, Lim BK (2018) Circuit-based frameworks of depressive behaviors: the role of reward circuitry and beyond. Pharmacol Biochem Behav 174:42–52.  https://doi.org/10.1016/j.pbb.2017.12.010 CrossRefGoogle Scholar
  44. Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, LaPlant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404.  https://doi.org/10.1016/J.CELL.2007.09.018 CrossRefGoogle Scholar
  45. Krishnan V, Han M-H, Mazei-Robison M, Iñiguez SD, Ables JL, Vialou V, Berton O, Ghose S, Covington HE, Wiley MD, Henderson RP, Neve RL, Eisch AJ, Tamminga CA, Russo SJ, Bolaños CA, Nestler EJ, Nestler EJ (2008) AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol Psychiatry 64:691–700.  https://doi.org/10.1016/j.biopsych.2008.06.003 CrossRefGoogle Scholar
  46. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217.  https://doi.org/10.1038/nature11527 CrossRefGoogle Scholar
  47. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359.  https://doi.org/10.1016/j.neuropharm.2013.03.019 CrossRefGoogle Scholar
  48. Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539.  https://doi.org/10.1038/nature09742 CrossRefGoogle Scholar
  49. Liu D, Tang Q-Q, Yin C, Song Y, Liu Y, Yang J-X, Liu H, Zhang Y-M, Wu S-Y, Song Y, Juarez B, Ding H-L, Han M-H, Zhang H, Cao J-L (2018) Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain 159:175.  https://doi.org/10.1097/j.pain.0000000000001083 CrossRefGoogle Scholar
  50. Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–585.  https://doi.org/10.1038/nn.3664 CrossRefGoogle Scholar
  51. Maier SF, Seligman MEP (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 1:3–46Google Scholar
  52. Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT (2014) Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82:1346–1356.  https://doi.org/10.1016/j.neuron.2014.04.030 CrossRefGoogle Scholar
  53. Miczek KA (1979) A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacology 60:253–259.  https://doi.org/10.1007/BF00426664 CrossRefGoogle Scholar
  54. Moreines JL, Owrutsky ZL, Gagnon KG, Grace AA (2017a) Divergent effects of acute and repeated quetiapine treatment on dopamine neuron activity in normal vs. chronic mild stress induced hypodopaminergic states. Transl Psychiatry 7:1275.  https://doi.org/10.1038/s41398-017-0039-9
  55. Moreines JL, Owrutsky ZL, Grace AA (2017b) Involvement of Infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after chronic mild stress. Neuropsychopharmacology 42:904–913.  https://doi.org/10.1038/npp.2016.249
  56. Morel C, Fernandez SP, Pantouli F, Meye FJ, Marti F, Tolu S, Parnaudeau S, Marie H, Tronche F, Maskos U, Moretti M, Gotti C, Han M-H, Bailey A, Mameli M, Barik J, Faure P (2018) Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells’ activity. Mol Psychiatry 23:1597–1605.  https://doi.org/10.1038/mp.2017.145 CrossRefGoogle Scholar
  57. Morikawa H, Paladini CA (2011) Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 198:95–111.  https://doi.org/10.1016/J.NEUROSCIENCE.2011.08.023 CrossRefGoogle Scholar
  58. Nestler EJ, Carlezon WA (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159.  https://doi.org/10.1016/J.BIOPSYCH.2005.09.018 CrossRefGoogle Scholar
  59. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25.  https://doi.org/10.1016/S0896-6273(02)00653-0 CrossRefGoogle Scholar
  60. Ng E, Browne CJ, Samsom JN, Wong AHC (2017) Depression and substance use comorbidity: what we have learned from animal studies. Am J Drug Alcohol Abuse 43:456–474.  https://doi.org/10.1080/00952990.2016.1183020 CrossRefGoogle Scholar
  61. Nikulina EM, Marchand JE, Kream RM, Miczek KA (1998) Behavioral sensitization to cocaine after a brief social stress is accompanied by changes in Fos expression in the murine brainstem. Brain Res 810:200–210.  https://doi.org/10.1016/S0006-8993(98)00925-1 CrossRefGoogle Scholar
  62. Nikulina EM, Miczek KA, Hammer RP (2005) Prolonged effects of repeated social defeat stress on mRNA expression and function of mu-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacology 30:1096–1103.  https://doi.org/10.1038/sj.npp.1300658 CrossRefGoogle Scholar
  63. Nikulina EM, Arrillaga-Romany I, Miczek KA, Hammer RP Jr (2008) Long-lasting alteration in mesocorticolimbic structures after repeated social defeat stress in rats: time course of mu-opioid receptor mRNA and FosB/DeltaFosB immunoreactivity. Eur J Neurosci 27:2272–2284.  https://doi.org/10.1111/j.1460-9568.2008.06176.x CrossRefGoogle Scholar
  64. Paladini CA, Roeper J (2014) Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 282:109–121.  https://doi.org/10.1016/J.NEUROSCIENCE.2014.07.032 CrossRefGoogle Scholar
  65. Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146–1152.  https://doi.org/10.1038/nn.3779 CrossRefGoogle Scholar
  66. Qu Y, Yang C, Ren Q, Ma M, Dong C, Hashimoto K (2018) Regional differences in dendritic spine density confer resilience to chronic social defeat stress. Acta Neuropsychiatr 30:117–122.  https://doi.org/10.1017/neu.2017.16 CrossRefGoogle Scholar
  67. Rincón-Cortés M, Grace AA (2017) Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int J Neuropsychopharmacol 20:823–832.  https://doi.org/10.1093/ijnp/pyx048
  68. Rush AJ, Kraemer HC, Sackeim HA, Fava M, Trivedi MH, Frank E, Ninan PT, Thase ME, Gelenberg AJ, Kupfer DJ, Regier DA, Rosenbaum JF, Ray O, Schatzberg AF (2006) Report by the ACNP task force on response and remission in major depressive disorder. Neuropsychopharmacology 31:1841–1853.  https://doi.org/10.1038/sj.npp.1301131 CrossRefGoogle Scholar
  69. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67:e9–e11.  https://doi.org/10.1016/J.BIOPSYCH.2009.08.027 CrossRefGoogle Scholar
  70. Schöner J, Heinz A, Endres M, Gertz K, Kronenberg G (2017) Post-traumatic stress disorder and beyond: an overview of rodent stress models. J Cell Mol Med 21:2248–2256.  https://doi.org/10.1111/jcmm.13161 CrossRefGoogle Scholar
  71. Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23:229–238.  https://doi.org/10.1016/j.conb.2012.11.012 CrossRefGoogle Scholar
  72. Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17:183–195.  https://doi.org/10.1038/nrn.2015.26 CrossRefGoogle Scholar
  73. Schwartz J, Murrough JW, Iosifescu DV (2016) Ketamine for treatment-resistant depression: recent developments and clinical applications: table 1. Evid Based Ment Heal 19:35–38.  https://doi.org/10.1136/eb-2016-102355 CrossRefGoogle Scholar
  74. Schweizer MC, Henniger MSH, Sillaber I (2009) Chronic mild stress (CMS) in mice: of anhedonia, “anomalous anxiolysis” and activity. PLoS One 4:e4326.  https://doi.org/10.1371/journal.pone.0004326 CrossRefGoogle Scholar
  75. Seligman MEP (1972) Learned helplessness. Annu Rev Med 23:407–412.  https://doi.org/10.1146/annurev.me.23.020172.002203 CrossRefGoogle Scholar
  76. Seroogy KB, Lundgren KH, Tran TMD, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342:321–334.  https://doi.org/10.1002/cne.903420302 CrossRefGoogle Scholar
  77. Shah NH, Aizenman E (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5:38–58.  https://doi.org/10.1007/s12975-013-0297-7 CrossRefGoogle Scholar
  78. Takamori K, Yoshida S, Okuyama S (2001) Repeated treatment with imipramine, fluvoxamine and tranylcypromine decreases the number of escape failures by activating dopaminergic systems in a rat learned helplessness test. Life Sci 69:1919–1926CrossRefGoogle Scholar
  79. Taylor AMW, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, Xue L, Olmstead MC, De Koninck Y, Evans CJ, Cahill CM (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35:8442–8450.  https://doi.org/10.1523/JNEUROSCI.4036-14.2015 CrossRefGoogle Scholar
  80. Tolliver BK, Anton RF (2015) Assessment and treatment of mood disorders in the context of substance abuse. Dialogues Clin Neurosci 17:181–190Google Scholar
  81. Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084.  https://doi.org/10.1126/science.1168878 CrossRefGoogle Scholar
  82. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, Kim S-Y, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541.  https://doi.org/10.1038/nature11740 CrossRefGoogle Scholar
  83. Vollmayr B, Gass P (2013) Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 354:171–178.  https://doi.org/10.1007/s00441-013-1654-2 CrossRefGoogle Scholar
  84. Wang H-L, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358.  https://doi.org/10.1111/j.1460-9568.2008.06576.x CrossRefGoogle Scholar
  85. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873.  https://doi.org/10.1016/J.NEURON.2012.03.017 CrossRefGoogle Scholar
  86. White F, Hu X, Marinelli M, Rudick C (2006) Excitability of dopamine neurons: modulation and physiological consequences. CNS Neurol Disord Drug Targets 5:79–97.  https://doi.org/10.2174/187152706784111542 CrossRefGoogle Scholar
  87. WHO(2013) | The World Health Report 2008 - primary health care (now more than ever). WHOGoogle Scholar
  88. Wiborg O (2013) Chronic mild stress for modeling anhedonia. Cell Tissue Res 354:155–169.  https://doi.org/10.1007/s00441-013-1664-0 CrossRefGoogle Scholar
  89. Willner P (1986) Validating criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10:677–690Google Scholar
  90. Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93.  https://doi.org/10.1016/j.ynstr.2016.08.002 CrossRefGoogle Scholar
  91. Willner P, Belzung C (2015) Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology 232:3473–3495.  https://doi.org/10.1007/s00213-015-4034-7 CrossRefGoogle Scholar
  92. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364CrossRefGoogle Scholar
  93. Willner P, Scheel-Krüger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37:2331–2371.  https://doi.org/10.1016/J.NEUBIOREV.2012.12.007 CrossRefGoogle Scholar
  94. Winter C, von Rumohr A, Mundt A, Petrus D, Klein J, Lee T, Morgenstern R, Kupsch A, Juckel G (2007) Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 184:133–141.  https://doi.org/10.1016/j.bbr.2007.07.002 CrossRefGoogle Scholar
  95. Wook Koo J, Labonté B, Engmann O, Calipari ES, Juarez B, Lorsch Z, Walsh JJ, Friedman AK, Yorgason JT, Han MH, Nestler EJ (2016) Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress–induced depressive behaviors. Biol Psychiatry 80:469–478.  https://doi.org/10.1016/j.biopsych.2015.12.009 CrossRefGoogle Scholar
  96. Yalcin I, Barrot M (2014) The anxiodepressive comorbidity in chronic pain. Curr Opin Anaesthesiol 27:520–527.  https://doi.org/10.1097/ACO.0000000000000116 CrossRefGoogle Scholar
  97. Yalcin I, Barthas F, Barrot M (2014) Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci Biobehav Rev 47:154–164.  https://doi.org/10.1016/j.neubiorev.2014.08.002 CrossRefGoogle Scholar
  98. Yin X, Guven N, Dietis N (2016) Stress-based animal models of depression: do we actually know what we are doing? Brain Res 1652:30–42.  https://doi.org/10.1016/j.brainres.2016.09.027 CrossRefGoogle Scholar
  99. Zhang H, Chaudhury D, Nectow AR, Friedman AK, Zhang S, Juarez B, Liu H, Pfau ML, Aleyasin H, Jiang C, Crumiller M, Calipari ES, Ku SM, Morel C, Tzavaras N, Montgomery SE, He M, Salton SR, Russo SJ, Nestler EJ, Friedman JM, Cao J-L, Han M-H (2018) α1- and β3-adrenergic receptor–mediated mesolimbic homeostatic plasticity confers resilience to social stress in susceptible mice. Biol Psychiatry.  https://doi.org/10.1016/J.BIOPSYCH.2018.08.020
  100. Zhong, P., Vickstrom, C.R., Liu, X., Hu, Y., Yu, L., Yu, H.-G., Liu, Q.-S., 2018. HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. Elife 7. doi  https://doi.org/10.7554/eLife.32420

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre National de la Recherche ScientifiqueInstitut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance

Personalised recommendations