Advertisement

Cell and Tissue Research

, Volume 376, Issue 1, pp 137–141 | Cite as

Morphometric analysis of thoracic aorta in Slc39a13/Zip13-KO mice

  • Takuya Hirose
  • Takamasa Shimazaki
  • Naoki Takahashi
  • Toshiyuki Fukada
  • Takafumi Watanabe
  • Prasarn TangkawattanaEmail author
  • Kazushige Takehana
Short Communication
  • 228 Downloads

Abstract

Ehlers–Danlos syndrome (EDS) is a collection of inheritable diseases involving the musculoskeletal, integumentary and visual systems. Spondylodysplastic EDS-ZIP13 (spEDS-ZIP13: OMIM 612350) was recently defined as a new form of EDS. Although vasculitis has been found in many spEDS-ZIP13 patients, vascular pathology has not been included as a pathognomonic lesion of this type of EDS. We investigate the morphometry of the thoracic aorta in wild-type and Zip13-knockout (Zip13-KO) mice. Our assessment found abnormalities in the number and morphology of elastic and cellular components in the aortic wall, especially the tunica media, of Zip13-KO mice, indicating aortic fragility. Accordingly, our major findings (vascular smooth muscle cells with small nuclei, small percentage of elastic membrane area per tunica media, many large elastic flaps) should be considered vulnerable characteristics indicating fragility of the aorta in patients with spEDS-ZIP13.

Keywords

Aorta Elasticity Elastic membrane Morphometry Slc39a13/Zip13-KO mouse 

Notes

Acknowledgments

The authors express sincere gratitude to Drs. Hiromi Ueda and Jun Minaguchi of the Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan, for their technical advice.

Funding information

This work was partially supported by The Maple Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. Deren-Wagemann I, Kuliszkiewicz-Janus M, Schiller J (2010) The ehlers-danlos syndrome. Adv Exp Med Biol 19:537–542Google Scholar
  2. Dusanic M, Dekomien G, Lücke T, Vorgerd M, Weis J, Epplen JT, Köhler C, Hoffjan S (2018) Novel nonsense mutation in SLC39A13 initially presenting as myopathy: case report and review of the literature. Mol Syndromol 9:100–109CrossRefGoogle Scholar
  3. Eble JA, Niland S (2009) The extracellular matrix of blood vessels. Curr Pharm Des 15:1385–1400CrossRefGoogle Scholar
  4. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, Hojyo S, Nakayama M, Ohara O, Koseki H, Dos Santos HG, Bonafe L, Ha-Vinh R, Zankl A, Unger S, Kraenzlin ME, Beckmann JS, Saito I, Rivolta C, Ikegawa S, Superti-Furga A, Hirano T (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-β signaling pathways. PLoS One 3:e3642CrossRefGoogle Scholar
  5. Giunta C, Elçioglu NH, Albrecht B, Eich G, Chambaz C, Janecke AR, Yeowell H, Weis M, Eyre DR, Kraenzlin M, Steinmann B (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305CrossRefGoogle Scholar
  6. Hirose T, Ogura T, Tanaka K, Minaguchi J, Yamauchi T, Fukada T, Koyama Y, Takehana K (2015) Comparative study of dermal components and plasma TGF-β1 levels in Slc39a13/Zip13-KO mice. J Vet Med Sci 77:1385–1389CrossRefGoogle Scholar
  7. Hirose T, Suzuki I, Takahashi N, Fukada T, Tangkawattana P, Takehana K (2018) Morphometric analysis of cornea in the Slc39a13/Zip13-knockout mice. J Vet Med Sci 80:814–818CrossRefGoogle Scholar
  8. Kahari VM, Olsen DR, Rhudy RW, Carrillo P, Chen YQ, Uitto J (1992) Transforming growth factor-beta upregulates elastin gene expression in human skin fibroblasts. Evidence for post-transcriptional modulation. Lab Investig 66:580–588Google Scholar
  9. Kucich U, Rosenbloom JC, Abrams WR, Bashir MM, Rosenbloom J (1997) Stabilization of elastin mRNA by TGF-beta: initial characterization of signaling pathway. Am J Respir Cell Mol Biol 17:10–16CrossRefGoogle Scholar
  10. Kucich U, Rosenbloom JC, Abrams WR, Rosenbloom J (2002) Transforming growth factor-beta stabilizes elastin mRNA by a pathway requiring active Smads, protein kinase C-delta, and p38. Am J Respir Cell Mol Biol 26:183–188CrossRefGoogle Scholar
  11. Malfait F, Francomand C, Byers P, Belmont J, Berglund B, Black J, Bloom L, Bowen JM, Brady AF, Burrows NP, Castori M, Cohen H, Colombi M, Demirdas S, De Backer J, De Paepe A, Fournel-Gigleux S, Frank M, Ghali N, Giunta C, Grahame R, Hakim A, Jeunemaitre X, Johnson D, Juul-Kristensen B, Kapferer-Seebacher I, Kazkaz H, Kosho T, Lavallee ME, Levy H, Mendoza-Londono R, Pepin M, Pope FM, Reinstein E, Robert L, Rohrbach M, Sanders L, Sobey GJ, Van Damme T, Vandersteen A, Van Mourik C, Voermans N, Wheeldon N, Zschocke J, Tinkle B (2017) The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 175C:8–26CrossRefGoogle Scholar
  12. Mariko B, Pezet M, Escoubet B, Bouillot S, Andrieu JP, Starcher B, Quaglino D, Jacob MP, Huber P, Ramirez F, Faury G (2011) Fibrillin-1 genetic deficiency leads to pathological aging of arteries in mice. J Pathol 224:33–44CrossRefGoogle Scholar
  13. Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J (13):1208–1218Google Scholar
  14. Rurali E, Perrucci GL, Pilato CA, Pini A, Gaetano R, Nigro P, Pompilio G (2018) Precise therapy for thoracic aortic aneurysm in marfan syndrome: a puzzle nearing its solution. Prog Cardiovasc Dis.  https://doi.org/10.1016/j.pcad.2018.07.020
  15. Wagenseil JE, Ciliberto CH, Knutsen RH, Levy MA, Kovacs A, Mecham RP (2010) The importance of elastin to aortic development in mice. Am J Physiol Heart Circ Physiol 299:257–264CrossRefGoogle Scholar
  16. Zhang MC, Giro MG, Quaglino D, Davidson JJ (1995) Transforming growth factor-b reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain. J Clin Invest 95:986–994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Takuya Hirose
    • 1
  • Takamasa Shimazaki
    • 1
  • Naoki Takahashi
    • 1
  • Toshiyuki Fukada
    • 2
  • Takafumi Watanabe
    • 1
    • 3
  • Prasarn Tangkawattana
    • 1
    • 4
    Email author
  • Kazushige Takehana
    • 1
  1. 1.Laboratory of Anatomy, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
  2. 2.Molecular and Cellular Physiology, Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
  3. 3.Laboratory of Animal Functional Anatomy, Faculty of AgricultureShinshu UniversityNaganoJapan
  4. 4.Faculty of Veterinary MedicineKhon Kaen UniversityKhon KaenThailand

Personalised recommendations