Cell and Tissue Research

, Volume 376, Issue 2, pp 273–279 | Cite as

Expression of OPA1 and Mic60 genes and their association with mitochondrial cristae morphology in Tibetan sheep

  • Guan Wang
  • Yanyu HeEmail author
  • Yuzhu LuoEmail author
Regular Article


In order to investigate the relationship between the expression of OPA1 and Mic60 genes and the shape of mitochondrial cristae and to explore the mechanism of Tibetan sheep adapting to a high altitude hypoxia environment, we investigate respiratory rate, mitochondrial cristae and the expression of OPA1 and Mic60 in four different tissues (myocardial, skeletal muscle, spleen and kidney) in Tibetan sheep and Small Tail Han sheep. Tibetan sheep had a higher respiratory rate than Small Tail Han sheep (p < 0.01). In the same tissue, the expression of OPA1 and Mic60 was higher (p < 0.05) in Tibetan sheep than Small Tail Han sheep. Between tissues, the expression of OPA1 and Mic60 was found to be lower (p < 0.05) in spleen than the other three tissues in both breeds. Mitochondrial cristae was dense and clear in myocardial and skeletal muscle but was relatively sparse and slightly swollen in kidney. In spleen, cristae was least and swollen and the gap between the cristae was large. The width of the mitochondrial cristae in the spleen was significantly larger than the width between the inner and outer membranes; however, it had little difference in the other three tissues. The width of mitochondrial cristae was significantly larger in the spleen than that in other tissues (p < 0.05). The numbers of mitochondrial cristae in the four tissues of Tibetan sheep were larger than those in Small Tail Han sheep (p < 0.05). The unique characters of the mitochondrial cristae in Tibetan sheep may be related to its adaption to a high altitude hypoxia environment.


OPA1 gene Mic60 gene Mitochondria Cristae Tibetan sheep 


Funding information

The preset study was supported by the Science Foundation of Gansu Agricultural University (GSAU-ZL-2015-032) and the Gansu Innovative Research Group Program (17JR5RA137).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 23:247–257CrossRefGoogle Scholar
  2. Barrera M, Koob S, Dikov D, Vogel F, Reichert AS (2016) OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation. FEBS Lett 590:3309–3322CrossRefGoogle Scholar
  3. Carelli V, La MC, Iommarini L, Carroccia R, Mattiazzi M, Sangiorgi S, Farne S, Maresca A, Foscarini B, Lanzi L, Amadori M, Bellan M, Valentino ML (2007) Mitochondrial optic neuropathies: how two genomes may kill the same cell type? Biosci Rep 27:173–184CrossRefGoogle Scholar
  4. Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. BBA-Bioenergetics 1837:418–426CrossRefGoogle Scholar
  5. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain Supercomplexes assembly and respiratory efficiency. Cell 155:160–171CrossRefGoogle Scholar
  6. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS (2011) ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 286:2918–2932CrossRefGoogle Scholar
  7. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology 21:233–241CrossRefGoogle Scholar
  8. Du L (2011) Animal genetic resources in China: sheep and goats. China Agriculture Press, BeijinGoogle Scholar
  9. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189CrossRefGoogle Scholar
  10. Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J (1997) Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 232:395–399CrossRefGoogle Scholar
  11. Gilkerson RW, Selker JML, Capaldi RA (2003) The Cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546:355–358CrossRefGoogle Scholar
  12. Griparic L, van NN, Orozco IJ, Peters PJ, van AM (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798CrossRefGoogle Scholar
  13. Harner M, Koerner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30:4356–4370CrossRefGoogle Scholar
  14. Head BP, Zulaika M, Ryazantsev S, van der Bliek AM (2011) A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans. Mol Biol Cell 22:831–841CrossRefGoogle Scholar
  15. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, DeVay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340CrossRefGoogle Scholar
  16. John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JML, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16:1543–1554CrossRefGoogle Scholar
  17. Koerner C, Barrera M, Dukanovic J, Eydt K, Harner M, Rabl R, Vogel F, Rapaport D, Neupert W, Reichert AS (2012) The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol Biol Cell 23:2143–2155CrossRefGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. In: methods-a companion to methods in enzymology, vol 25. American academic press. Salt Lake City, pp 402–408Google Scholar
  19. Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari J (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395CrossRefGoogle Scholar
  20. Olichon A, Elachouri G, Baricault L, Delettre C, Belenguer P, Lenaers G (2007) OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ 14:682–692CrossRefGoogle Scholar
  21. Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L, Harper M-E, Germain M, Slack RS (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33:2676–2691CrossRefGoogle Scholar
  22. Spinazzi M, Cazzola S, Bortolozzi M, Baracca A, Loro E, Casarin A, Solaini G, Sgarbi G, Casalena G, Cenacchi G, Malena A, Frezza C, Carrara F, Angelini C, Scorrano L, Salviati L, Vergani L (2008) A novel deletion in the gtpase domain of opa1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 17:3291–3302CrossRefGoogle Scholar
  23. Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247CrossRefGoogle Scholar
  24. Von der Malsburg K, Mueller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou J-C, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B, van der Klei IJ, Pfanner N, Chacinska A, van der Laan M (2011) Dual role of Mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707CrossRefGoogle Scholar
  25. Yang R-F, Sun L-H, Zhang R, Zhang Y, Luo Y-X, Zheng W, Zhang Z-Q, Chen H-Z, Liu D-P (2015) Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation. Sci Rep 5:7990CrossRefGoogle Scholar
  26. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
  2. 2.International Wool Research InstituteGansu Agricultural UniversityLanzhouChina
  3. 3.Gansu Provincial Key Lab of Arid-land Crop ScienceGansu Agricultural UniversityLanzhouChina

Personalised recommendations