Testosterone improves the osteogenic potential of a composite in vitro and in vivo

  • Kelen J. R. da Costa
  • Alfonso Gala-García
  • Joel J. Passos
  • Vagner R. Santos
  • Ruben D. Sinisterra
  • Célia R. M. Lanza
  • Maria E. CortésEmail author
Regular Article


Testosterone (T) has been suggested as a promising agent in the bone osteointegration when incorporated in a bioceramic/polymer combination for the local application. The objective of this study was to evaluate the activity of a testosterone composite of poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and biphasic calcium phosphate (BCP) as a strategy for enhancing its osteogenic effect and to evaluate tissue response to the composite implantation. PLGA/PCL/BCP/T and PLGA/PCL/BCP composites were prepared and characterized using thermal analysis. Composite morphology and surface characteristics were assessed by SEM and EDS. The evaluations of in vitro effects of testosterone composite on osteoblasts viability, alkaline phosphatase activity, collagen production, osteocalcin concentration, quantification of mineralization, and nitric oxide concentration, after 7, 14, and 21 days. Testosterone was successfully incorporated and composites showed a homogeneously distributed porous structure. The PLGA/PCL/BCP/T composite had a stimulatory effect on osteoblastic activity on the parameters evaluated, except to nitric oxide production. After 60 days, the PLGA/PCL/BCP/T composite showed no chronic inflammatory infiltrate, whereas the PLGA/PCL/BCP composite showed mild chronic inflammatory infiltrate. Angiogenesis, cellular adsorption, and fibrous deposit were observed on the surfaces of implanted composites. The composites in combination with testosterone can be exploited to investigate the use of this scaffold for bone integration.


Testosterone Bone formation Calcium phosphate Ceramic composite Mineralization 



The authors are grateful to the Chemistry Department of UFMG for the use of their Thermal Spectroscopy and Center of Microscopy (UFMG) for providing the equipment.


This study had financial support by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Instituto Nacional de Ciência e Tecnologia Nanobiofar (INCT-Nanobiofar) CNPq Brazilian agencies.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflict of interests.

Supplementary material

441_2018_2970_MOESM1_ESM.jpg (49 kb)
Supplemental Figure EDS analysis of the surfaces of a) PLGA/PCL/BCP/T and b) PLGA/PCL/BCP/T after soaking in SBF for 21 days, and c) PLGA/PCL/BCP after soaking in SBF for 21 days. (JPG 48 kb)


  1. Abd El-Mohdy HL (2012) Controlled release of testosterone propionate based on poly N-vinyl pyrrolidone/2-acrylamido-2-methyl-1-propanesulfonic acid hydrogels prepared by ionizing radiation. J Polym Res 19:9931. CrossRefGoogle Scholar
  2. Barbanti SH, Zavaglia CAC, Duek EAR (2008) Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Mater Res 11(1):75–80. CrossRefGoogle Scholar
  3. Benghuzzi H, Tucci M, Tsao A, Russell G, England B, Ragab A (2004) Stimulation of osteogenesis by means of sustained delivery of various natural androgenic hormones. Biomed Sci Instrum 40:99–104 ISSN: 0067-8856PubMedGoogle Scholar
  4. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146CrossRefGoogle Scholar
  5. Callewaert F, Boonen S, Vanderschueren D (2010) Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol Metab 21(2):89–95. CrossRefPubMedGoogle Scholar
  6. Chen QZ, Boccaccini AR (2006) Poly (D,L-lactic acid) coated 45S5 Bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A 77:445–457. CrossRefPubMedGoogle Scholar
  7. Cheng BH, Chu TMG, Chang C, Kang HY, Huang KE (2013) Testosterone delivered with a scaffold is as effective as bone morphologic protein-2 in promoting the repair of critical-size segmental defect of femoral bone in mice. PLoS One 8:e70234. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Da Costa KJR, Passos JJ, Gomes ADM, Sinisterra RD, Lanza CR, Cortés ME (2012) Effect of testosterone incorporation on cell proliferation and differentiation for polymer-bioceramic composites. J Mater Sci Mater Med 23:2751–2759. CrossRefPubMedGoogle Scholar
  9. Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and sources. Biomaterials 25:757–768. CrossRefPubMedGoogle Scholar
  10. Dorozhkin SV (2011) Calcium orthophosphate occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomaterials 1(2):121–164. CrossRefGoogle Scholar
  11. Engeland CG, Sabzehei B, Marucha PT (2009) Sex hormones and mucosal wound healing. Brain Behav Immun 23:629–635. CrossRefPubMedGoogle Scholar
  12. Freshney RI (1994) Culture of animal cells: a manual of basic technique, Wiley-Liss, New York. 3rd ed. Wiley-Liss, Inc: New York. XXIV, 486 pages (1994).
  13. Gala-García A, Carneiro MB, Silva GA, Ferreira LS, Vieira LQ, Marques MM (2012) In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly (lactic-co-glycolic acid) composite. J Mater Sci Mater Med 23(7):1785–1796. CrossRefPubMedGoogle Scholar
  14. Galow A-M, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J (2017) Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem Biophysics Rep 10:17–25. CrossRefGoogle Scholar
  15. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138. CrossRefPubMedGoogle Scholar
  16. Kasper CH, Wergedal JE, Farley JR (1989) Androgens direct stimulate proliferation of bone cells in vitro. Endocrinol 124(3):1576–1578. CrossRefGoogle Scholar
  17. Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone composite for drug delivery. Biomaterials 25(7–8):1279–1287. CrossRefPubMedGoogle Scholar
  18. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. CrossRefPubMedGoogle Scholar
  19. Legeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753. CrossRefPubMedGoogle Scholar
  20. Lin IC, Smartt JM, Nah HD, Ischiropoulos H, Kirschner RE (2008) Nitric oxide stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells. Plast Reconstr Surg 12:1554–1566. CrossRefGoogle Scholar
  21. Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Kerkis I (2015) Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res 361:477–495CrossRefGoogle Scholar
  22. Mei N, Chen G, Zhou P, Chen X, Shao ZZ, Pan LF, Wu CG (2005) Biocompatibility of Polycaprolactone scaffold modified by chitosan-the fibroblasts proliferation in vitro. J Biomater Appl 19:323–339. CrossRefPubMedGoogle Scholar
  23. Müller WEG, Wang X, Diehl-Seifert B, Kropf K, Schlossmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7(6):2661–2671. CrossRefPubMedGoogle Scholar
  24. Naidoo K, Rolfes H, Easton K, Moolman S, Chetty A, Richter W, Nilen R (2008) An emulsion preparation for novel micro-porous polymeric hemi-shells. Mater Lett 62:252–254CrossRefGoogle Scholar
  25. Nanci A., & Ten Cate AR (2008). Ten Cate's oral histology: development, structure, and function. St. Louis, Mo, Mosby. 7th Ed pages. 411Google Scholar
  26. Nasr HF, Aichelmann-Reidy ME, Yukna RA (1999) Bone and bone substitutes. Periodontol 2000:74–86CrossRefGoogle Scholar
  27. Notelovitz M (2002) Androgen effects on bone and muscle. Fertil Steril 77(4):S34–S41. CrossRefPubMedGoogle Scholar
  28. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernández-Luna JL, González-Macías J (1995) Expression and functional role of nitric oxide syntheses in osteoblast-like cells. J Bone Miner Res 10:439–446. CrossRefPubMedGoogle Scholar
  29. Shen H, Hu XX, Bei JZ, Wang S (2008) The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials 29:2388–2399. CrossRefPubMedGoogle Scholar
  30. Shor L, Güçeri S, Wen X, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28:5291–5297. CrossRefPubMedGoogle Scholar
  31. Steffens JP, Herrera BS, Coimbra LS, Stephens DN, Rossa CJ, Spolidorio LC, Kantarci A, Van Dyke TE (2014) Testosterone regulates bone response to inflammation. Horm Metab Res 46:193–200. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617. CrossRefPubMedGoogle Scholar
  33. Van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immuno 103:255–261. CrossRefGoogle Scholar
  34. Victor SP, Kumar TSS (2008) BCP ceramic microspheres as drug delivery carriers: synthesis, characterization and doxycycline release. J Mater Sci Mater Med 19:283–290. CrossRefPubMedGoogle Scholar
  35. Wiren K, Toombs A, Zhang XW (2004) Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol 32:209–226. CrossRefPubMedGoogle Scholar
  36. Xynos ID, Buttery LDK, Hench L (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce IGF II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465. CrossRefPubMedGoogle Scholar
  37. Yamasaki H, Sakai H (1992) Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials 13(5):308–312CrossRefGoogle Scholar
  38. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. ChemSoc Rev 37:1473–1481. CrossRefGoogle Scholar
  39. Zhao L, Lin K, Zhang M, Xiong C, Bao Y, Pang X, Chang J (2011) The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics. J Mater Sci 46:4986–4993. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kelen J. R. da Costa
    • 1
  • Alfonso Gala-García
    • 1
  • Joel J. Passos
    • 2
  • Vagner R. Santos
    • 3
  • Ruben D. Sinisterra
    • 2
  • Célia R. M. Lanza
    • 3
  • Maria E. Cortés
    • 1
    Email author
  1. 1.Restorative Dentistry Department, Dentistry FacultyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of ChemistryUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departmentof Dental Clinic, Pathology and Surgery, Dentistry FacultyUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations