Advertisement

Diversity of central oxytocinergic projections

  • Gustav F. Jirikowski
Review

Abstract

Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as “accessory neurons.” Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones.

Keywords

Hypothalamo neurohypophyseal system Circumventricular organs Liquor contacting neurons Perivascular system Limbic system 

Notes

References

  1. Althammer F, Grinevich V (2017) Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol.  https://doi.org/10.1111/jne.12549 CrossRefGoogle Scholar
  2. Bakos J, Srancikova A, Havranek T, Bacova Z (2018) Molecular mechanisms of oxytocin signaling at the synaptic connection. Neural Plast.  https://doi.org/10.1155/2018/4864107 CrossRefGoogle Scholar
  3. Blanco E, Jirikowski GF, Gonzalez R, Pilgrim C, Vazquez R (1990) Ultrastructural changes of the neuropil interposed between oxytocin-secreting neurons and blood vessels during late pregnancy and lactation in the rat. An Anat 36:30–32Google Scholar
  4. Blanco E, Pilgrim C, Vazquez R, Jirikowski GF (1992) Plasticity of the interface between oxytocin neurons and the vasculature in late pregnant rats: an ultrastructural morphometric study. Acta Histochem 91:165–170CrossRefGoogle Scholar
  5. Boccia ML, Petrusz P, Suzuki K, Marson L, Pedersen CA (2013) Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 253:155–164CrossRefGoogle Scholar
  6. Buijs RM, Swaab DF (1979) Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res 204:355–365CrossRefGoogle Scholar
  7. Buijs RM, Van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain–a synaptic event. Brain Res 252:71–76CrossRefGoogle Scholar
  8. Caldwell JD, Jirikowski GF, Greer ER, Stumpf WE, Pedersen CA (1988) Ovarian steroids and sexual interaction alter oxytocinergic content and distribution in the basal forebrain. Brain Res 446:236–244CrossRefGoogle Scholar
  9. Caldwell JD, Brooks PJ, Jirikowski GF, Barakat AS, Lund PK, Pedersen CA (1989) Estrogen alters oxytocin mRNA levels in the preoptic area. J Neuroendocrinol 1:273–278CrossRefGoogle Scholar
  10. Caldwell JD, Londe K, Ochs SD, Hajdu Z, Rodewald A, Gebhart VM, Jirikowski GF (2017) Three steroid-binding globulins, their localization in the brain and nose, and what they might be doing there. Steroids.  https://doi.org/10.1016/j.steroids.2017.12.004
  11. Clipperton-Allen AE, Lee AW, Reyes A, Devidze N, Phan A, Pfaff DW, Choleris E (2012) Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice. Physiol Behav 105:915–924CrossRefGoogle Scholar
  12. Da Silva FP, Machado MC, Sallet PC, Zampieri FG, Goulart AC, Torggler Filho F, Barbeiro HV, Velasco IT, da Cruz Neto LM, de Souza HP (2014) Neuropeptide downregulation in sepsis. Inflammation 37:142–145CrossRefGoogle Scholar
  13. Devost D, Wrzal P, Zingg HH (2008) Oxytocin receptor signalling. Prog Brain Res 170:167–176CrossRefGoogle Scholar
  14. Dief AE, Sivukhina EV, Jirikowski GF (2018) Oxytocin and stress response. Open J Endocrine Metab Dis 8:93–104CrossRefGoogle Scholar
  15. Frasch A, Zetzsche T, Steiger A, Jirikowski GF (1996) Reduction of plasma oxytocin levels in patients suffering from major depression. In: Ivell R, Russell J (eds) Oxytocin, cellular and molecular approaches in medicine and research. Advances in Experimental Medicine and Biology, Plenum Press, New York, pp 152–155Google Scholar
  16. Freeman SM, Smith AL, Goodman MM, Bales KL (2017) Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem. Soc Neurosci.  https://doi.org/10.1080/17470919.2016.1156570 CrossRefGoogle Scholar
  17. Fuchs U, Leipnitz C, Lippert TH (1989) The action of oxytocin on sperm motility. In vitro experiments with bull spermatozoa. Clin Exp Obstet Gynecol 16:95–97PubMedGoogle Scholar
  18. Gainer H (2012) Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J Neuroendocrinol 24:528–538CrossRefGoogle Scholar
  19. Giovannelli L, Shiromani P, Jirikowski GF, Bloom FE (1990) Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress. Brain Res 531:299–303CrossRefGoogle Scholar
  20. Gorka SM, Fitzgerald DA, Labuschagne I, Hosanagar A, Wood AG, Nathan PJ, Phan KL (2015) Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology 40:278–286CrossRefGoogle Scholar
  21. Gould BR, Zingg HH (2003) Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience 122:155–167CrossRefGoogle Scholar
  22. Ivell R, Kimura T, Müller D, Augustin K, Abend N, Bathgate R, Telgmann R, Balvers M, Tillmann G, Fuchs AR (2001) The structure and regulation of the oxytocin receptor. Exp Physiol 86:289–296CrossRefGoogle Scholar
  23. Jirikowski GF (1992) Oxytocinergic hypothalamic chemoarchitecture during mating, pregnancy, parturition and lactation. In: Pedersen CA, Caldwell JD, Jirikowski GF, Insel T (eds) Oxytocin in maternal, sexual and social behaviors, vol 652. Annals of the New York Academy of Sciences, New York, pp 253–270Google Scholar
  24. Jirikowski GF, Caldwell JD, Stumpf WE, Pedersen CA (1988) Oxytocinergic neuronal systems in the rat hypothalamus are influenced by estrogens. Neuroscience 25:237–248CrossRefGoogle Scholar
  25. Jirikowski GF, Caldwell JD, Pilgrim C, Stumpf WE, Pedersen CA (1989) Changes in immunostaining for oxytocin in the forebrain of the female rat during late pregnancy, parturition and early lactation. Cell Tiss Res 256:411–417CrossRefGoogle Scholar
  26. Jirikowski GF, Stumpf WE, Pedersen CA (1990a) Oxytocinergic estradiol targets in the mouse hypothalamus. Fol Histochem Cytobiol 28:3–11Google Scholar
  27. Jirikowski GF, Sanna PP, Bloom FE (1990b) mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc Natl Acad Sci U S A 87:7400–7404CrossRefGoogle Scholar
  28. Jirikowski GF, Ramalho-Ortigao JF, Caldwell JD (1991a) Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Horm Metab Res 23:476–480CrossRefGoogle Scholar
  29. Jirikowski GF, Caldwell JD, Häussler HU, Pedersen CA (1991b) Mating alters topography and content of oxytocin immunoreactivity in male mouse brain. Cell Tissue Res 266:399–403CrossRefGoogle Scholar
  30. Jirikowski GF, Mc Gimsey WC, Sar M (1993) Topography of oxytocinergic glucocorticoid target neurons in the rat hypothalamus. Horm Metab Res 25:543–544CrossRefGoogle Scholar
  31. Jirikowski GF, Kaunzner UW, Dief AE, Caldwell JD (2009) Distribution of vitamin D binding protein expressing neurons in the rat hypothalamus. Histochem Cell Biol 131:365–370CrossRefGoogle Scholar
  32. Jirikowski GF, Ochs SD, Caldwell JD (2018) Oxytocin and steroid actions. Curr Top Behav Neurosci 35:77–95CrossRefGoogle Scholar
  33. Jurek B, Neumann ID (2018) The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 98:1805–1908CrossRefGoogle Scholar
  34. Kiyama H, Emson PC (1990) Evidence for the co-expression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurohypophysin messenger ribonucleic acids by hybridization histochemistry. J Neuroendocrinol 1:257–259CrossRefGoogle Scholar
  35. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 9(73):553–566CrossRefGoogle Scholar
  36. László K, Kovács A, Zagoracz O, Ollmann T, Péczely L, Kertes E, Lacy DG, Lénárd L (2016) Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav Brain Res 296:279–285CrossRefGoogle Scholar
  37. Lefevre A, Hurlemann R, Grinevich V (2018) Imaging neuropeptide effects on human brain function. Cell Tissue Res.  https://doi.org/10.1007/s00441-018-2899-6
  38. Leppanen J, Cardi V, Ng KW, Paloyelis Y, Stein D, Tchanturia K, Treasure J (2017) The effects of intranasal oxytocin on smoothie intake, cortisol and attentional bias in anorexia nervosa. Psychoneuroendocrinology.  https://doi.org/10.1016/j.psyneuen.2017.01.017 CrossRefGoogle Scholar
  39. Marlin BJ, Froemke RC (2017) Oxytocin modulation of neural circuits for social behavior. Dev Neurobiol 77:169–189CrossRefGoogle Scholar
  40. Menon R, Grund T, Zoicas I, Althammer F, Fiedler D, Biermeier V, Bosch OJ, Hiraoka Y, Nishimori K, Eliava M, Grinevich V, Neumann ID (2018) Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr Biol 28:1066–1078CrossRefGoogle Scholar
  41. Mohamadi Y, Jameie SB, Akbari M, Staji M, Moradi F, Mokhtari T, Khanehzad M, Hassanzadeh G (2015) Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of diabetes mellitus. Acta Med Iran 53:1–7PubMedGoogle Scholar
  42. Møller M, Busch JR, Jacobsen C, Lundemose SB, Lynnerup N, Rath MF, Banner J (2018) The accessory magnocellular neurosecretory system of the rostral human hypothalamus. Cell Tissue Res.  https://doi.org/10.1007/s00441-018-2818-x CrossRefGoogle Scholar
  43. Morris JF, Budd TC, Epton MJ, Ma D, Pow DV, Wang H (1998) Functions of the perikaryon and dendrites in magnocellular vasopressin-secreting neurons: new insights from ultrastructural studies. Prog Brain Res 119:21–30CrossRefGoogle Scholar
  44. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  45. Pedersen CA, Caldwell JD, Jirikowski GF (1988) Oxytocin and reproductive behavior. In: Yoshida S, Share L (eds) Recent progress in posterior pituitary hormones. Elsevier, Amsterdam, pp 139–141Google Scholar
  46. Ryan PJ, Ross SI, Campos CA, Derkach VA, Palmiter RD (2017) Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat Neurosci 20:1722–1733CrossRefGoogle Scholar
  47. Sabihi S, Durosko NE, Dong SM, Leuner B (2014) Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 45:31–42CrossRefGoogle Scholar
  48. Sakamoto H, Matsuda K, Hosokawa K, Nishi M, Morris JF, Prossnitz ER, Kawata M (2007) Expression of G protein-coupled receptor-30, a G protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology 148:5842–5850CrossRefGoogle Scholar
  49. Santoso P, Nakata M, Ueta Y, Yada T (2017) Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibition of feeding behavior. Am J Physiol Endocrinol Metab.  https://doi.org/10.1152/ajpendo.00338.2016 CrossRefGoogle Scholar
  50. Scantamburlo G, Hansenne M, Geenen V, Legros JJ, Ansseau M (2015) Additional intranasal oxytocin to escitalopram improves depressive symptoms in resistant depression: an open trial. Eur Psychiatry 30:65–68CrossRefGoogle Scholar
  51. Sendemir E, Kafa IM, Schäfer HH, Jirikowski GF (2013) Altered oxytocinergic hypothalamus systems in sepsis. J Chem Neuroanat 52:44–48CrossRefGoogle Scholar
  52. Sivukhina EV, Jirikowski GF (2014) Adrenal steroids in the brain: role of the intrinsic expression of corticosteroid-binding globulin (CBG) in the stress response. Steroids 81:70–73CrossRefGoogle Scholar
  53. Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res 60:101–114CrossRefGoogle Scholar
  54. Vigh-Teichmann I, Vigh B, Koritsánszky S (1970) Liquor contacting neurons in the paraventricular nucleus. Z Zellforsch Mikrosk Anat 103:483–501CrossRefGoogle Scholar
  55. Villegas-Gabutti CM, Pennacchio GE, Vivas L, Jahn GA, Soaje M (2018) Role of oxytocin in prolactin secretion during late pregnancy. Neuroendocrinology 106:324–334CrossRefGoogle Scholar
  56. Winter J, Jurek B (2018) The interplay between oxytocin and the CRF system: regulation of the stress response. Cell Tissue Res.  https://doi.org/10.1007/s00441-018-2866-2
  57. Wittkowski W (1969) Ependymokrinie und Rezeptoren in der Wand des Recessus infundibularis der Maus und ihre Beziehung zum kleinzeligen Hypothalamus. Z Zellforschung 93:530–546CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Anatomy IIJena University HospitalJenaGermany

Personalised recommendations