Cell and Tissue Research

, Volume 374, Issue 3, pp 427–438 | Cite as

Nanomedicine in cancer stem cell therapy: from fringe to forefront

  • Nazish Tabassum
  • Vinod VermaEmail author
  • Manoj Kumar
  • Ashok Kumar
  • Birbal Singh


Nanomedicine is the spin-off of modern medicine and nanotechnology and aims to prevent and treat diseases using nanoscale materials such as biocompatible nanoparticles and nanorobots. Targeted cellular and tissue-specific clinical applications with maximal therapeutic effects and insignificant side effects could be achieved by the pursuit of nanotechnology in medicine and healthcare regimen. The majority of conventional cancer therapies eliminate the cells of the tumor but not the cancer stem cells (CSCs). Conversely, the use of nanotechnology in CSC-based therapies is an emerging field of biomedical sciences. This article summarizes the recent trends and application of nanomedicine especially in CSC therapy along with its limitations.


Nanomedicine Nanomaterials Nanodevice Cancer stem cells (CSCs) Drug delivery 



This work is supported by a DST (SERB/LS-310/2013) and UPCST (CST/YSS/D-2873) grant.

Compliance with ethical standards

Disclosure of potential conflicts of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article.


  1. Akhter S, Ahmad MZ, Ahmad FJ et al (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Delivery 9:1225–1243. CrossRefGoogle Scholar
  2. Alberts DS, Muggia FM, Carmichael J et al (2004) Efficacy and safety of liposomal anthracyclines in phase I/II clinical trials. Semin Oncol 13:53–90. CrossRefGoogle Scholar
  3. Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 13:5–15CrossRefGoogle Scholar
  4. Annett S, Robson T (2018) Targeting cancer stem cells in the clinic: current status and perspectives. Pharmacol Ther S0163-7258(18):30020–30022. CrossRefGoogle Scholar
  5. Astruc D (1996) Research avenues on dendrimers towards molecular biology: from biomimetism to medicinal engineering. C R Acad Sci 322:757–766Google Scholar
  6. Azad NS, Posadas EM, Kwitkowski VE et al (2008) Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 26:3709–3714. CrossRefPubMedGoogle Scholar
  7. Bardhan R, Lal S, Joshi A et al (2011) Theranosctic shells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barenholz Y (2012) Doxil—the first FDA-approved nano-drug: lessons learned. J Control Release 2:117–134CrossRefGoogle Scholar
  9. Benezra M, Penate-Medina O, Zanzonico PB et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blank CU, Hooijkaas AI, Haanen JB (2011) Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother 60:1359–1371. CrossRefPubMedGoogle Scholar
  11. Boczkowski J, Hoet P (2010) What’s new in nanotoxicology? Implications for public health from a brief review of the 2008 literature. Nanotoxicology 4:1–14. CrossRefPubMedGoogle Scholar
  12. Bose RJC, Paulmurugan R, Moon J et al (2018) Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discov Today S1359-6446(17):30570–30576. CrossRefGoogle Scholar
  13. Cai KM, He X, Song ZY et al (2015) Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J Am Chem Soc 137:3458–3461. CrossRefPubMedGoogle Scholar
  14. Canter RJ, Grossenbacher SK, Ames E et al (2016) Immune targeting of cancer stem cells in gastrointestinal oncology. J Gastrointest Oncol 7(Suppl 1):S1–S10.
  15. Cassette E, Helle M, Bezdetnaya L et al (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65(5):719–731. CrossRefPubMedGoogle Scholar
  16. Chawla SP, Chua VS, Fernandez L et al (2009) Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther (9):1651–1657. CrossRefGoogle Scholar
  17. Chawla SP, Chua VS, Fernandez L et al (2010) Advanced phase I/II studies of targeted gene delivery in vivo: intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol Ther (2):435–441. CrossRefGoogle Scholar
  18. Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cornu G, Michaux JL, Sokal G et al (1974) Daunorubicin-DNA: further clinical trials in acute non-lymphoblastic leukemia. Eur J Cancer 10:695–700. CrossRefPubMedGoogle Scholar
  20. Couvreur P, Tulkens P, Roland M et al (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326. CrossRefPubMedGoogle Scholar
  21. Davis FF (2002) The origin of pegnology. Adv Drug Deliv Rev 54:457–458CrossRefGoogle Scholar
  22. De Jong W, Borm P (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149Google Scholar
  23. Deng Z, Wu Y, Ma W et al (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16(1). CrossRefGoogle Scholar
  24. Dequeker J, Verdickt W, Gevers G et al (1984) Long term experience with oral gold in rheumatoid arthritis and psoriatic arthritis. Clin Rheumatol 3:67–74CrossRefGoogle Scholar
  25. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807. CrossRefPubMedGoogle Scholar
  26. Du WT, Hong L, Yao TW et al (2007) Synthesis and evaluation of water-soluble docetaxel prodrugs-docetaxel esters of malic acid. Bioorg Med Chem 15:6323–6330. CrossRefPubMedGoogle Scholar
  27. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701. CrossRefPubMedGoogle Scholar
  28. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141. CrossRefGoogle Scholar
  29. European Science Foundation (2005) Forward Look Nanomedicine: An EMRC Consensus Opinion. Available online: (accessed on 21 December 2015)
  30. Farrell D, Ptak K, Panaro NJ et al (2011) Nanotechnology-based cancer therapeutics-promise and challenge-lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 28:273–278. CrossRefPubMedGoogle Scholar
  31. Food and Drug Administration (2016) FDA approves new, targeted treatment for bladder cancer: Tecentriq is the first PD-L1 inhibitor approved by the FDA. FDA News ReleaseGoogle Scholar
  32. Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 4:987–992Google Scholar
  33. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet (5):419–436. CrossRefGoogle Scholar
  34. Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 4:424–436CrossRefGoogle Scholar
  35. Galen US (2011) DaunoXome: daunorubicin citrate liposome injection.
  36. Garcia-Garcia E, Andrieux K, Gil S et al (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–292. CrossRefPubMedGoogle Scholar
  37. Gordon EM, Hall FL (2010) Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther (5):819–832. CrossRefGoogle Scholar
  38. Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14:95–99CrossRefGoogle Scholar
  39. Gros L, Ringsdorf H, Schupp H (1981) Polymeric antitumour agents on a molecular and cellular level. Angew Chem Int Ed 20:301–323. CrossRefGoogle Scholar
  40. Hallett RM, Kondratyev MK, Giacomelli AO et al (2012) Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 7:e33976. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hurwitz E, Levy R, Maron R et al (1975) The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activities. Cancer Res 35:1175–1181PubMedGoogle Scholar
  42. Jain KK (2008) The handbook of nanomedicine. Humana Press Totowa NJ USAGoogle Scholar
  43. Kawabata Y, Wada K, Nakatani M et al (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10. CrossRefPubMedGoogle Scholar
  44. Kim MS, Haney MJ, Zhao HY et al (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine Nano- technology Biol Med 12:655–664. CrossRefGoogle Scholar
  45. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633. CrossRefPubMedGoogle Scholar
  46. Kumar M, Yadav AK, Verma V et al (2016) Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 11:585–600. CrossRefPubMedGoogle Scholar
  47. Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672. CrossRefPubMedGoogle Scholar
  48. Li J, Yap SQ, Yoong SL et al (2012) Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50:1625–1634CrossRefGoogle Scholar
  49. Li Y, Rogoff HA, Keates S et al (2015) Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A 112:1839–1844. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liggins RT, Burt HM (2002) Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 54:191–202CrossRefGoogle Scholar
  51. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on haemolytic activity. J Am Chem Soc 132:4834–4842. CrossRefPubMedGoogle Scholar
  52. Lokich JJ, Zipoli TE, Moore C et al (1986) Doxorubicin/vinblastine and doxorubicin/cyclophosphamide combination chemotherapy by continuous infusion. Cancer 58:1020–1023CrossRefGoogle Scholar
  53. Luke DR, Kasiske BL, Matzke GR et al (1987) Effects of cyclosporine on the isolated perfused rat kidney. Transplantation 43:795–799CrossRefGoogle Scholar
  54. Ma K, Sai H, Wiesner U (2012) Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc 134:13180–13183. CrossRefPubMedGoogle Scholar
  55. Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46. CrossRefPubMedGoogle Scholar
  56. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine. Recent advances. Adv Drug Deliv Rev 65(5):689–702. CrossRefPubMedGoogle Scholar
  57. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344. CrossRefPubMedGoogle Scholar
  59. Pan Y, Du X, Zhao F et al (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41:2912–−2942. CrossRefPubMedGoogle Scholar
  60. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. CrossRefPubMedGoogle Scholar
  61. Porter MD, Lipert RJ, Siperko LM et al (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–−1011. CrossRefPubMedGoogle Scholar
  62. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 6:1266–1276. CrossRefGoogle Scholar
  63. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 51:135–153CrossRefGoogle Scholar
  64. Rivoltini L, Chiodoni C, Squarcina P et al (2016) TNF-relatedapoptosis-inducingligand (TRAIL)-armed exosomesdeliverproapoptoticsignalstotumor site. Clin Cancer Res 22:3499–3512. CrossRefPubMedGoogle Scholar
  65. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370CrossRefGoogle Scholar
  66. Sell S (2009) Regulatory networks in stem cells. Stem Cell Biology and Regenerative Medicine:495–503Google Scholar
  67. Shapira A, Livney YD, Broxterman HJ et al (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Update 14:150-163. doi: CrossRefGoogle Scholar
  68. Shen S, Wu Y, Liu Y et al (2017) High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine 12:4085–4109. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Singh B, Mal G, Marotta F (2017) Designer probiotics: paving the way to living therapeutics. Trends Biotechnol 35:679–682. CrossRefPubMedGoogle Scholar
  70. Singh OP, Nehru RM (2008) Nanotechnology and cancer treatment. Asian J Exp Sci 22:45–50Google Scholar
  71. Sopherion therapeutics. Myocet: doxorubicin hydrochloride (liposome) for injection. (2001)
  72. Srivastava A, Amreddy N, Babu A et al (2016) Nanosomes carrying doxorubicin exhibit potent anticancer activity against humanlung cancer cells. Sci Rep 6:38541. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sun R, Liu Y, Li S et al (2015) Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37:405–414. CrossRefPubMedGoogle Scholar
  74. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occupat Med Toxicol 2:16–22. CrossRefGoogle Scholar
  75. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–121. CrossRefPubMedGoogle Scholar
  76. Toffoli G, Hadla M, Corona G et al (2015) Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine 10:2963–2971. CrossRefPubMedGoogle Scholar
  77. Trivedi N, Patel N, Upadhyay UM et al (2012) Gold nanoparticulate drug delivery system: a review. Pharmacie Globale International Journal of Comphrehesive Pharmacy 6:1–5Google Scholar
  78. Trouet A, Masquelier M, Baurain R et al (1982) A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. Proc Natl Acad Sci U S A 79:626–629CrossRefGoogle Scholar
  79. Wang YXJ, Hussain SM, Krestin GP et al (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331. CrossRefPubMedGoogle Scholar
  80. Waterhouse DN, Tardi PG, Mayer LD et al (2001) A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 12:903–920CrossRefGoogle Scholar
  81. Wiwattanapatapee R, Carreno-Gomez B, Malik N et al (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system. Pharm Res 17:991–998. CrossRefPubMedGoogle Scholar
  82. Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes area source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303. CrossRefPubMedGoogle Scholar
  83. Yang C, Xiong F, Wang J et al (2014) Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles against cancer stem-like cell activity in multiple myeloma. Nanomedicine 9:45–60. CrossRefPubMedGoogle Scholar
  84. Zeilstra J, Joosten SP, Dokter M et al (2008) Deletion of the WNT target and cancer stem cell marker CD44 in Apc(min/+) mice attenuates intestinal tumorigenesis. Cancer Res 68:3655–3661. CrossRefPubMedGoogle Scholar
  85. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nazish Tabassum
    • 1
  • Vinod Verma
    • 1
    Email author
  • Manoj Kumar
    • 2
  • Ashok Kumar
    • 3
  • Birbal Singh
    • 4
  1. 1.Centre of Biotechnology, Nehru Science ComplexUniversity of AllahabadAllahabadIndia
  2. 2.National Institute for Research in Environmental Health (NIREH), ICMRBhopalIndia
  3. 3.Department of ZoologyMLK Post Graduate CollegeBalrampurIndia
  4. 4.Indian Veterinary Research Institute, Regional StationPalampurIndia

Personalised recommendations