Cell and Tissue Research

, Volume 374, Issue 3, pp 497–515 | Cite as

Morphology of visual projection neurons supplying premotor area in the brain of the silkmoth Bombyx mori

  • Shigehiro NamikiEmail author
  • Ryohei Kanzaki
Regular Article


Sex pheromones orient male moths toward conspecific female moths; the presence of visual information modulates this behavior. In the current study, we explore candidate neuronal pathways for the interaction between vision and the locomotor signal for pheromone orientation. We describe the connectivity between visual neuropils and brain premotor centers, the posterior slope (PS) and the lateral accessory lobe (LAL), in the silkmoth Bombyx mori. Using a single-cell labeling technique, we analyze visual projection neurons supplying these areas. Neurons from both the medulla and lobula complex projected to the PS but only the neurons originating in the lobula complex had additional processes to the LAL. Further, we identified populations of putative feedback neurons from the premotor centers to the optic lobe. Neurons originating in the PS were likely to project to the medulla, whereas those originating in the LAL were likely to project to the lobula complex. The anatomical study contributes to further understanding of integration of visual information on the locomotor control in the insect brain.


Intracellular recording Lateral accessory lobe Posterior slope Lobula Pheromone 



Central body


Central complex


Descending neurons




Gnathal ganglion


Inner lobula


Lateral accessory lobe


Lateral accessory lobe commissure


Lateral antennal lobe tract


Lateral horn


Lobula plate


Lucifer yellow




Macroglomerular complex


Outer lobula


Peduncles of the mushroom body


Posterior lateral protocerebrum


Posterior slope


Superior medial protocerebrum


Ventral lateral protocerebrum


Ventral protocerebrum


Delta area of the inferior lateral protocerebrum



We thank Chika Iwatsuki, Satoshi Wada and Evan S. Hill for their technical assistance. We are grateful to the FlyCircuit database from the NCHC (National Center for High-performance Computing) and NTHU (National Tsing Hua University).

Funding information

This work was financially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant numbers: 17H05011 and 16H06732 to SN, 15H04399 to R.K.) and the Narishige Zoological Science Award to S.N.

Supplementary material

441_2018_2892_MOESM1_ESM.dtd (42 kb)
ESM 1 (DTD 42 kb)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Ando N, Emoto S, Kanzaki R (2013) Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim 8:016008. CrossRefPubMedGoogle Scholar
  3. Ando N, Kanzaki R (2017) Using insects to drive mobile robots—hybrid robots bridge the gap between biological and artificial systems. Arthropod Struct Dev 46:723–735. CrossRefPubMedGoogle Scholar
  4. Budick SA, Dickinson MH (2006) Free-flight responses of Drosophila melanogaster to attractive odors. J Exp Biol 209:3001–3017CrossRefGoogle Scholar
  5. Cardona A, Larsen C, Hartenstein V (2009) Neuronal fiber tracts connecting the brain and ventral nerve cord of the early Drosophila larva. J Comp Neurol 515:427–440. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cardona A, Saalfeld S, Preibisch S et al (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. CrossRefGoogle Scholar
  7. Chiang AS, Lin CY, Chuang CC et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11. CrossRefPubMedGoogle Scholar
  8. Douglass JK, Strausfeld NJ (1996) Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate. J Neurosci 16:4551–4562CrossRefGoogle Scholar
  9. Duistermars BJ, Frye MA (2008) Crossmodal visual input for odor tracking during fly flight. Curr Biol 18:270–275CrossRefGoogle Scholar
  10. Farkas SR, Shorey HH (1972) Chemical trail-foIlowing by flying insects: a mechanism for orientation to a distant odor source. Science 178:67–68CrossRefGoogle Scholar
  11. Fujiwara T, Cruz TL, Bohnslav JP, Chiappe ME (2016) A faithful internal representation of walking movements in the Drosophila visual system. Nat Neurosci 20:72–81. CrossRefPubMedGoogle Scholar
  12. Gilbert C, Strausfeld NJ (1991) The functional organization of male-specific visual neurons in flies. J Comp Physiol A 169:395–411CrossRefGoogle Scholar
  13. Heinze S, Florman J, Asokaraj S et al (2013) Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 521:267–298. CrossRefPubMedGoogle Scholar
  14. Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478. CrossRefPubMedGoogle Scholar
  15. Hertel H, Maronde U (1987) The physiology and morphology of centrally projecting visual interneurones in the honeybee brain. J Exp Biol 133:301–315Google Scholar
  16. Homberg U, Montague et al (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281CrossRefGoogle Scholar
  17. Hsu CT, Bhandawat V (2016) Organization of descending neurons in Drosophila melanogaster. Sci Rep 6:20259. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ito K, Shinomiya K, Ito M et al (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765. CrossRefPubMedGoogle Scholar
  19. Kanzaki R, Arbas EA, Hildebrand JG (1991) Physiology and morphology of protocerebral olfactory neurons in the male moth Manduca sexta. J Comp Physiol A 168:281–298CrossRefGoogle Scholar
  20. Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9:515–527Google Scholar
  21. Kanzaki R, Ikeda et al (1994) Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A Sensory, Neural Behav Physiol 175:1–14Google Scholar
  22. Kennedy JS (1983) Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol Entomol 8:109–120CrossRefGoogle Scholar
  23. Kim AJ, Fitzgerald JK, Maimon G (2015) Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci 18:1247–1255. CrossRefPubMedGoogle Scholar
  24. Kuenen LPS, Carde RT (1994) Strategies for recontacting a lost pheromone plume: casting and upwind flight in the male gypsy moth. Physiological Entomology 19:15–29CrossRefGoogle Scholar
  25. Lin CY, Chuang CC, Hua TE et al (2013) A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep 3:1739–1753. CrossRefPubMedGoogle Scholar
  26. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216CrossRefGoogle Scholar
  27. Mizunami M (1995) Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. Adv In Insect Phys 25:151–265. CrossRefGoogle Scholar
  28. Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:501–515. CrossRefPubMedGoogle Scholar
  29. Namiki S, Iwabuchi S, Pansopha Kono P, Kanzaki R (2014) Information flow through neural circuits for pheromone orientation. Nat Commun 5:5919. CrossRefPubMedGoogle Scholar
  30. Namiki S, Kanzaki R (2016) Comparative neuroanatomy of the lateral accessory lobe in the insect brain. Front Physiol 7:244. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Namiki S, Wada S, Kanzaki R (2018) Descending neurons from the lateral accessory lobe and posterior slope in the brain of the silkmoth Bombyx mori. Sci Rep 8:9663CrossRefGoogle Scholar
  32. Nordström K, Barnett PD, Moyer de Miguel IM et al (2008) Sexual dimorphism in the hoverfly motion vision pathway. Curr Biol 18:661–667. CrossRefPubMedGoogle Scholar
  33. Nordström K, Barnett PD, O’Carroll DC (2006) Insect detection of small targets moving in visual clutter. PLoS Biol 4:e54. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Okada R, Sakura M, Mizunami M (2003) Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 458:158–174. CrossRefPubMedGoogle Scholar
  35. Olberg R (1983) Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol A 152:297–307CrossRefGoogle Scholar
  36. Pansopha P, Ando N, Kanzaki R (2014) Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol 217:1811–1820CrossRefGoogle Scholar
  37. Paulk AC, Dacks AM, Phillips-Portillo J et al (2009) Visual processing in the central bee brain. J Neurosci 29:9987–9999CrossRefGoogle Scholar
  38. Paulk AC, Phillips-Portillo J, Dacks AM et al (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peters BH, Römer H, Marquart V (1986) Spatial segregation of synaptic inputs and outputs in a locust auditory interneurone. J Comp Neurol 254:34–50. CrossRefPubMedGoogle Scholar
  40. Pfeiffer K, Homberg U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59:165–184. CrossRefPubMedGoogle Scholar
  41. Römer V, Marquart H (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262CrossRefGoogle Scholar
  42. Staudacher E (1998) Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus. Cell Tissue Res 294:187–202CrossRefGoogle Scholar
  43. Strausfeld NJ, Bassemir UK (1985) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala. Cell Tissue Res 240:617–640. CrossRefGoogle Scholar
  44. Strausfeld NJ, Gronenberg W (1990) Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways. J Comp Neurol 302:954–972CrossRefGoogle Scholar
  45. van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24:274–286CrossRefGoogle Scholar
  46. Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci 91:5756–5760CrossRefGoogle Scholar
  47. Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM, Tanimoto H (2016) Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. Elife 5:e14009CrossRefGoogle Scholar
  48. Wicklein M, Varjú D (1999) Visual system of the European hummingbird hawkmoth Macroglossum stellatarum (Sphingidae, Lepidoptera): motion-sensitive interneurons of the lobula plate. J Comp Neurol 408:272–282CrossRefGoogle Scholar
  49. Willis MA, Baker TC (1994) Behaviour of flying oriental fruit moth males during approach to sex pheromone sources. Physiol Entomol 19:61–69CrossRefGoogle Scholar
  50. Yagi R, Mabuchi Y, Mizunami M, Tanaka NK (2016) Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster. Sci Rep 6:29481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations