Cell and Tissue Research

, Volume 374, Issue 3, pp 567–575 | Cite as

Inhibition of Stat3 signaling pathway decreases TNF-α-induced autophagy in cementoblasts

  • Leilei Wang
  • Yunlong Wang
  • Mingyuan Du
  • Zhijian Liu
  • Zhengguo Cao
  • Yunru Hao
  • Hong HeEmail author
Regular Article


Autophagy is a self-digestive process that eliminates impaired or aged proteins and potentially toxic intracellular components to maintain homeostasis. We previously demonstrated that TNF-α played a critical role in cementoblast differentiation, mineralization and apoptosis; however, the effect of TNF-α on cementoblast autophagy has remained unclear. In this study, an elevated immunofluorescence signal of LC3B and autophagic vacuoles, autophagosomes and autolysosomes were detected under TNF-α stimulation in OCCM-30 cells. Autophagy-related genes and proteins, Beclin-1, LC3A and Atg-5, were significantly upregulated by TNF-α in a time- and concentration-dependent manner. During this process, the activity of Stat3 was dramatically enhanced and when the activity of Stat3 was blocked by either a specific chemical inhibitor or siRNA transfection before TNF-α stimulation, the TNF-α-induced upregulation of autophagy-related genes and proteins was strongly inhibited. Our results suggest that TNF-α induced autophagy in cementoblasts was dependent, or partially dependent on the activity of Stat3 signaling pathway.


Tumor necrosis factor-α Dental cementum Cementoblast Autophagy Signal transducer and activator of transcription 3 


Authors’ contribution

Study design: L.L. Wang, Y.L. Wang, H. He, Z.J. Liu, Z.G. Cao and M.Y. Du. Data Collection and analysis: L.L. Wang, and Y.R. Hao. Contribution of new reagents or analytical tools: M.Y. Du. Manuscript preparation: L.L. Wang, Y.L. Wang and H. He.

Funding information

This study was financially supported by grants from the National Natural Science Foundation of China (Nos. 81671020 and 81200811) and the Natural Science Foundation of Hubei Province (No. 2015CFB404)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2018_2890_MOESM1_ESM.dtd (42 kb)
ESM 1 (DTD 42 kb)


  1. An Y, Liu W, Xue P, Zhang Y, Wang Q, Jin Y (2016) Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. J Clin Periodontol 43:618–625CrossRefGoogle Scholar
  2. Bartolome A, Lopez-Herradon A, Portal-Nunez S, Garcia-Aguilar A, Esbrit P, Benito M, Guillen C (2013) Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J 455:329–337CrossRefGoogle Scholar
  3. Beertsen W, Mcculloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40CrossRefGoogle Scholar
  4. Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594CrossRefGoogle Scholar
  5. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Investig 109:1139–1142CrossRefGoogle Scholar
  6. Chen XT, Ying Z, Lin X, Lin HX, Wu JH, Li MF, Song LB (2013) Acylglycerol kinase augments jak2/stat3 signaling in esophageal squamous cells. J Clin Investig 123:2576–2589CrossRefGoogle Scholar
  7. D’errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ (2000) Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 71:63–72CrossRefGoogle Scholar
  8. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y (2014) Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 10:1301–1315CrossRefGoogle Scholar
  9. Dang S, Yu ZM, Zhang CY, Zheng J, Li KL, Wu Y, Qian LL, Yang ZY, Li XR, Zhang Y (2015) Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Res Ther 6:247–253CrossRefGoogle Scholar
  10. Diekwisch TG (2001) The developmental biology of cementum. Int J Dev Biol 45:695–706PubMedGoogle Scholar
  11. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) Nf-kappab activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382CrossRefGoogle Scholar
  12. Du TA (2012) Autophagy: Stat3 maintains order. Nat Rev Mol Cell Biol 13:754–760Google Scholar
  13. Ertugrul AS, Sahin H, Dikilitas A, Alpaslan N, Bozoglan A (2013) Comparison of ccl28, interleukin-8, interleukin-1beta and tumor necrosis factor-alpha in subjects with gingivitis, chronic periodontitis and generalized aggressive periodontitis. J Periodontal Res 48:44–51CrossRefGoogle Scholar
  14. Fan TF, Wu TF, Bu LL, Ma SR, Li YC, Mao L, Sun ZJ, Zhang WF (2016) Dihydromyricetin promotes autophagy and apoptosis through ros-stat3 signaling in head and neck squamous cell carcinoma. Oncotarget 7:59691–59703PubMedPubMedCentralGoogle Scholar
  15. Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SC, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating stat3 signaling. Cell Death Dis 5:e1088–e1099CrossRefGoogle Scholar
  16. Gao B, Wang H, Lafdil F, Feng D (2012) Stat proteins—key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 57:430–441CrossRefGoogle Scholar
  17. Ha SW, Weitzmann MN, Beck GR Jr (2014) Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with lc3 and p62. ACS Nano 8:5898–5910CrossRefGoogle Scholar
  18. He M, Wang C, Sun JH, Liu Y, Wang H, Zhao JS, Li YF, Chang H, Hou JM, Song JN (2017) Roscovitine attenuates intimal hyperplasia via inhibiting nf-κb and stat3 activation induced by tnf-α in vascular smooth muscle cells. Biochem Pharmacol 137:51–60CrossRefGoogle Scholar
  19. Jude B, Vetel S, Girouxmetges MA, Pennec JP (2017) Rapid negative inotropic effect induced by tnf-α in rat heart perfused related to pkc activation. Cytokine 107:65–69CrossRefGoogle Scholar
  20. Kang R, Tang D, Lotze MT, Iii HJZ (2012) Ager/rage-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the il6-pstat3 pathway. Autophagy 8:989–991CrossRefGoogle Scholar
  21. Kim IR, Kim SE, Baek HS, Kim BJ, Kim CH, Chung IK, Park BS, Shin SH (2016) The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic mc3t3-e1 cells. BMC Complement Altern Med 16:333–342CrossRefGoogle Scholar
  22. Kim J, Lee HW, Rhee DK, Paton JC, Pyo S (2017) Pneumolysin-induced autophagy contributes to inhibition of osteoblast differentiation through downregulation of sp1 in human osteosarcoma cells. Biochim Biophys Acta 1861:2663–2673CrossRefGoogle Scholar
  23. Lee BH, Hsu WH, Liao TH, Pan TM (2011) The monascus metabolite monascin against tnf-alpha-induced insulin resistance via suppressing ppar-gamma phosphorylation in c2c12 myotubes. Food Chem Toxicol 49:2609–2617CrossRefGoogle Scholar
  24. Levine B, Klionsky DJ (2004) Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477CrossRefGoogle Scholar
  25. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42CrossRefGoogle Scholar
  26. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335CrossRefGoogle Scholar
  27. Levy DE, Lee CK (2002) What does stat3 do? J Clin Investig 109:1143–1148CrossRefGoogle Scholar
  28. Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL (2013) Suppression of autophagy by fip200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 28:2414–2430CrossRefGoogle Scholar
  29. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398CrossRefGoogle Scholar
  30. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326CrossRefGoogle Scholar
  31. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) Il-1beta and tnfalpha-initiated il-6-stat3 pathway is critical in mediating inflammatory cytokines and rankl expression in inflammatory arthritis. Int Immunol 23:701–712CrossRefGoogle Scholar
  32. Oates TW, Graves DT, Cochran DL (2002) Clinical, radiographic and biochemical assessment of il-1/tnf-alpha antagonist inhibition of bone loss in experimental periodontitis. J Clin Periodontol 29:137–143CrossRefGoogle Scholar
  33. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR (2008) Autophagy-related proteins, lc3 and beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 15:912–920CrossRefGoogle Scholar
  34. Oka H, Miyauchi M, Sakamoto K, Moriwaki S, Niida S, Noguchi K, Somerman MJ, Takata T (2007) Pge2 activates cementoclastogenesis by cementoblasts via ep4. J Dent Res 86:974–979CrossRefGoogle Scholar
  35. Padial-Molina M, Volk SL, Rodriguez JC, Marchesan JT, Galindo-Moreno P, Rios HF (2013) Tumor necrosis factor-alpha and porphyromonas gingivalis lipopolysaccharides decrease periostin in human periodontal ligament fibroblasts. J Periodontol 84:694–703CrossRefGoogle Scholar
  36. Pei F, Lin H, Liu H, Li L, Zhang L, Chen Z (2015) Dual role of autophagy in lipopolysaccharide-induced preodontoblastic cells. J Dent Res 94:175–182CrossRefGoogle Scholar
  37. Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF (2015) Autophagy in bone: self-eating to stay in balance. Ageing Res Rev 24:206–217CrossRefGoogle Scholar
  38. Qin B, Zhuo Z, He J, Yan C, Ding S (2015) Il-6 inhibits starvation-induced autophagy via the stat3/bcl-2 signaling pathway. Sci Rep 5:15701–15710CrossRefGoogle Scholar
  39. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for nix in autophagic maturation of erythroid cells. Nature 454:232–235CrossRefGoogle Scholar
  40. Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7–19CrossRefGoogle Scholar
  41. Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Marino G, Lachkar S, Senovilla L, Galluzzi L, Kepp O, Pierron G, Maiuri MC, Hikita H, Kroemer R, Kroemer G (2012) Cytoplasmic stat3 represses autophagy by inhibiting pkr activity. Mol Cell 48:667–680CrossRefGoogle Scholar
  42. Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Mariño G, Lachkar S, Senovilla L (2013) Cytoplasmic stat3 represses autophagy by inhibiting pkr activity. Mol Cell 48:667–680CrossRefGoogle Scholar
  43. Takano-Ohmuro H, Mukaida M, Kominami E, Morioka K (2000) Autophagy in embryonic erythroid cells: its role in maturation. Eur J Cell Biol 79:759–764CrossRefGoogle Scholar
  44. Wang YL, He H, Liu ZJ, Cao ZG, Wang XY, Yang K, Fang Y, Han M, Zhang C, Huo FY (2015) Effects of tnf-alpha on cementoblast differentiation, mineralization, and apoptosis. J Dent Res 94:1225–1232CrossRefGoogle Scholar
  45. Wong PF, Jamal J, Tong KL, Khor ES, Yeap CE, Jong HL, Lee ST, Mustafa MR, Abubakar S (2017) Deregulation of hsa-mir-20b expression in tnf-alpha-induced premature senescence of human pulmonary microvascular endothelial cells. Microvasc Res 114:26–33CrossRefGoogle Scholar
  46. Wu J, Guo J, Cao Q, Wang Y, Chen J, Wang Z, Yuan Z (2017) Autophagy impacts on oxaliplatin-induced hepatocarcinoma apoptosis via the il-17/il-17r-jak2/stat3 signaling pathway. Oncol Lett 13:770–776CrossRefGoogle Scholar
  47. Ye YC, Wang HJ, Yu L, Tashiro S, Onodera S, Ikejima T (2012) Rip1-mediated mitochondrial dysfunction and ros production contributed to tumor necrosis factor alpha-induced l929 cell necroptosis and autophagy. Int Immunopharmacol 14:674–682CrossRefGoogle Scholar
  48. Yoon S, Woo SU, Kang JH, Kim K, Kwon MH, Park S, Shin HJ, Gwak HS, Chwae YJ (2010) Stat3 transcriptional factor activated by reactive oxygen species induces il6 in starvation-induced autophagy of cancer cells. Autophagy 6:1125–1138CrossRefGoogle Scholar
  49. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, Sui X, Pan H, Han W (2015) The role of stat3 in autophagy. Autophagy 11:729–739CrossRefGoogle Scholar
  50. Yu H, Jove R (2004) The stats of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105CrossRefGoogle Scholar
  51. Yu H, Pardoll D, Jove R (2009) Stats in cancer inflammation and immunity: a leading role for stat3. Nat Rev Cancer 9:798–809CrossRefGoogle Scholar
  52. Zhao D, Yuan H, Yi F, Meng C, Zhu Q (2014) Autophagy prevents doxorubicininduced apoptosis in osteosarcoma. Mol Med Rep 9:1975–1981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Leilei Wang
    • 1
  • Yunlong Wang
    • 1
  • Mingyuan Du
    • 1
  • Zhijian Liu
    • 1
  • Zhengguo Cao
    • 1
  • Yunru Hao
    • 1
  • Hong He
    • 1
    Email author
  1. 1.Department of Orthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina

Personalised recommendations