Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Regulatory effect of chemokines in bone marrow niche


Chemokines secreted from different cellular components of bone marrow (BM) play an important role in the formation of the BM niche system. The hematopoietic stem cell (HSC) pool located in specialized anatomical sites within the BM is subjected to a complex network of chemokines, such that the produced chemokines affect the fate of these cells. Expression of different chemokine receptors on leukemic stem cells (LSCs) uncovers the critical role of chemokines in the maintenance, survival and fate of these cells in the leukemic niche. As a pre-metastatic niche rich in a variety of chemokines, the BM niche is turned into a locus of tumor cell development and division. The chemokine receptors expressed on the surface of metastatic cells lead to their metastasis and homing to the BM niche. Knowledge of chemokines and their receptors leads to the production of various therapeutic antagonists at chemokine receptors expressed on leukemic and tumor cells, enabling interference with chemokine function as a therapeutic tool. New findings suggest that miRNAs, with their specific inhibitory function, affect the ability of producing and expressing chemokines and chemokine receptors. This review focuses on the emerging role of chemokines and their receptors in normal and pathologic conditions of the BM niche, and also discusses the new therapeutic methods with this background.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Abroun S (2008) Chemokines in homeostasis and cancers. Yakhteh Med J 10:155–166

  2. Arabanian LS, Fierro FA, Stölzel F, Heder C, Poitz DM, Strasser RH, Wobus M, Bornhäuser M, Ferrer RA, Platzbecker U (2014) miRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow stromal cells. Haematol Haematol 99:997–1005, 2013.097675

  3. Asirvatham AJ, Magner WJ, Tomasi TB (2009) miRNA regulation of cytokine genes. Cytokine 45:58–69

  4. Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2013) Bone marrow neoplastic niche in leukemia. Hematology 19:232–238

  5. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47:1127–1137

  6. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

  7. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226:148–157

  8. Bast RC Jr, Urban N, Shridhar V, Smith D, Zhang Z, Skates S, Lu K, Liu J, Fishman D, Mills G (2002) Early detection of ovarian cancer: promise and reality. Cancer Treat Res 107:61–97

  9. Bissels U, Bosio A, Wagner W (2012) MicroRNAs are shaping the hematopoietic landscape. Haematologica 97:160–167

  10. Borish LC, Steinke JW (2003) Cytokines and chemokines. J Allergy Clin Immunol 111(2):S460–S475

  11. Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB (2014) MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 25:6

  12. Broxmeyer HE (2008) Chemokines in hematopoiesis. Curr Opin Hematol 15:49–58

  13. Burger J, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23:43–52

  14. Bydlowski SP, Levy D, Ruiz JM, Pereira J (2013) Hematopoietic stem cell niche: role in normal and malignant hematopoiesis: In: Alimoghaddam K (ed) Stem cell biology in normal life and diseases, vol V.InTech, Rijeka, pp 17–32

  15. Calvi LM, Link DC (2014) Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif Tissue Int 94:112–124

  16. Cao H, Oteiza A, Nilsson SK (2013) Understanding the role of the microenvironment during definitive hemopoietic development. Exp Hematol 41:761–768

  17. Chinni SR, Sivalogan S, Dong Z, Deng X, Bonfil RD, Cher ML (2006) CXCL12/CXCR4 signaling activates Akt‐1 and MMP‐9 expression in prostate cancer cells: the role of bone microenvironment‐associated CXCL12. Prostate 66:32–48

  18. Choong ML, Yong YP, Tan AC, Luo B, Lodish HF (2004) LIX: a chemokine with a role in hematopoietic stem cells maintenance. Cytokine 25:239–245

  19. Chotinantakul K, Leeanansaksiri W (2012) Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res 2012:270425

  20. Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32:1074–1082

  21. Crews LA, Jamieson CH (2013) Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 338:15–22

  22. Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer 1806:42–49

  23. Doan P, Chute J (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26:54–62

  24. Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208:421–428

  25. Ema H, Suda T (2012) Two anatomically distinct niches regulate stem cell activity. Blood 120:2174–2181

  26. Grassi F, Piacentini A, Cristino S, Toneguzzi S, Cavallo C, Facchini A, Lisignoli G (2003) Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem Cell Biol 120:391–400

  27. Graves DT, Jiang Y, Valente AJ (1999) The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Front Biosci 4:D571–D580

  28. Hanoun M, Frenette PS (2013) This niche is a maze; an amazing niche. Cell Stem Cell 12:391–392

  29. Haylock DN, Nilsson SK (2006) Osteopontin: a bridge between bone and blood. Br J Haematol 134:467–474

  30. Hoggatt J, Pelus LM (2011) Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res Ther 2:13

  31. Hoggatt J, Scadden DT (2012) The stem cell niche: tissue physiology at a single cell level. J Clin Invest 122:3029

  32. Huang X, Cho S, Spangrude G (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ 14:1851–1859

  33. Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68:1715–1722

  34. Jamieson-Gladney WL, Zhang Y, Fong AM, Meucci O, Fatatis A (2011) The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res 13:R91

  35. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8

  36. Johnson EL, Singh S, Johnson-Holiday C, Singh UP, Partridge EE, Datta MW, Lillard JW (2006) CCL25-CCR9 axis role in ovarian cancer cell metastasis and survival. Proc Am Assoc Cancer Res 2006:70

  37. Kalinkovich A, Spiegel A, Shivtiel S, Kollet O, Jordaney N, Piacibello W, Lapidot T (2009) Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun 23:1059–1065

  38. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

  39. Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13:72–81

  40. Karnoub AE, Weinberg RA (2007) Chemokine networks and breast cancer metastasis. Breast Dis 26:75–85

  41. Kim S-J, Shin J-Y, Lee K-D, Bae Y-K, Sung KW, Nam SJ, Chun K-H (2012) MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of CC chemokine receptor type 7. Breast Cancer Res 14:R14

  42. Klarenbeek A, Maussang D, Blanchetot C, Saunders M, van der Woning S, Smit M, de Haard H, Hofman E (2013) Targeting chemokines and chemokine receptors with antibodies. Drug Discov Today Technol 9:e237–e244

  43. Krause DS, Scadden DT, Preffer FI (2013) The hematopoietic stem cell niche—home for friend and foe? Cytometry B 84:7–20

  44. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

  45. Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48:489–496

  46. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

  47. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E, Biffoni M, Nuzzolo ER, Billi M, Foà R (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10:788–801

  48. Lean JM, Murphy C, Fuller K, Chambers TJ (2002) CCL9/MIP‐1γ and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem 87:386–393

  49. Liang Z, Bian X, Shim H (2014) Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Res Treat 146:535–542

  50. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction–mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

  51. Lisignoli G, Toneguzzi S, Piacentini A, Cattini L, Lenti A, Tschon M, Cristino S, Grassi F, Facchini A (2003) Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and β‐N‐acetylhexosaminidase release. J Cell Physiol 194:71–79

  52. Liu Z, Sall A, Yang D (2008) MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 9:978–999

  53. López-Giral S, Quintana NE, Cabrerizo M, Alfonso-Pérez M, Sala-Valdés M, de Soria VGG, Fernández-Rañada JM, Fernández-Ruiz E, Muñoz C (2004) Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol 76:462–471

  54. Lu X, Kang Y (2009) Chemokine (CC motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096

  55. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J (2009) Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 26:161–169

  56. Luis T, Killmann NM, Staal F (2012) Signal transduction pathways regulating hematopoietic stem cell biology: introduction to a series of spotlight reviews. Leukemia 26:86–90

  57. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257

  58. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21:27–39

  59. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

  60. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

  61. Motabi IH, DiPersio JF (2012) Advances in stem cell mobilization. Blood Rev 26:267–278

  62. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

  63. Musrap N, Diamandis EP (2012) Revisiting the complexity of the ovarian cancer microenvironment—clinical implications for treatment strategies. Mol Cancer Res 10:1254–1264

  64. Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23:9–18

  65. Nwajei F, Konopleva M (2013) The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol 2013, 953982

  66. Papachristou DJ, Basdra EK, Papavassiliou AG (2012) Bone metastases: molecular mechanisms and novel therapeutic interventions. Med Res Rev 32:611–636

  67. Peled A, Tavor S (2013) Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3:34

  68. Pelus LM, Fukuda S (2006) Peripheral blood stem cell mobilization: the CXCR2 ligand GROβ rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 34:1010–1020

  69. Pelus L, Fukuda S (2008) Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 22:466–473

  70. Pelus LM, Horowitz D, Cooper SC, King AG (2002) Peripheral blood stem cell mobilization: a role for CXC chemokines. Crit Rev Oncol Hematol 43:257–275

  71. Pillai MM, Yang X, Balakrishnan I, Bemis L, Torok-Storb B (2010) MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS ONE 5:e14304

  72. Pontikoglou C, Deschaseaux F, Sensebé L, Papadaki HA (2011) Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev Rep 7:569–589

  73. Rankin SM (2012) Chemokines and adult bone marrow stem cells. Immunol Lett 145:47–54

  74. Reiland J, Furcht LT, McCarthy JB (1999) CXC‐chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41:78–88

  75. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

  76. Ruddy MJ, Shen F, Smith JB, Sharma A, Gaffen SL (2004) Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment. J Leukoc Biol 76:135–144

  77. Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, Jaseb K, Saki N (2013) The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol 19:8–16

  78. Saki N, Abroun S, Hagh MF, Asgharei F (2011) Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J (Yakhteh) 13:131

  79. Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS (2013) Chemokines in tumor progression and metastasis. Oncotarget 4:2171

  80. Sceneay J, Smyth MJ, Möller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:449–464

  81. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegué E (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13:285–299

  82. Schinköthe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206

  83. Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR (2001) Epithelial cancer cell migration a role for chemokine receptors? Cancer Res 61:4961–4965

  84. Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

  85. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34:590–601

  86. Shi J, Wei Y, Xia J, Wang S, Wu J, Chen F, Huang G, Chen J (2014) CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis. Future Oncol 10:749–759

  87. Shiozawa Y, Pienta KJ, Taichman RS (2011) Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res 17:5553–5558

  88. Silberstein LE, Lin CP (2013) A New image of the hematopoietic stem cell vascular niche. Cell Stem Cell 13:514–516

  89. Singh S, Singh UP, Stiles JK, Grizzle WE, Lillard JW (2004) Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clin Cancer Res 10:8743–8750

  90. Smith JN, Calvi LM (2013) Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells 31:1044–1050

  91. Su L, Zhang J, Xu H, Wang Y, Chu Y, Liu R, Xiong S (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non–small cell lung cancer cells. Clin Cancer Res 11:8273–8280

  92. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS (2003) Expression of CXCR4 and CXCL12 (SDF‐1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89:462–473

  93. Taubenberger AV (2014) In vitro microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev 79-80C:135–144

  94. Tzoneva G, Ferrando AA (2012) Recent advances on NOTCH signaling in T-ALL. CurrTop Microbiol Immunol 360:163–182

  95. Ugarte F, Forsberg EC (2013) Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 32:2535–2547

  96. Vaday GG, Peehl DM, Kadam PA, Lawrence DM (2006) Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 66:124–134

  97. Velasco-Velázquez M, Pestell RG (2013) The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncoimmunology 2:e23660–e23660

  98. Wang D, Liu D, Gao J, Liu M, Liu S, Jiang M, Liu Y, Zheng D (2013) TRAIL‐induced miR‐146a expression suppresses CXCR4‐mediated human breast cancer migration. FEBS J 280:3340–3353

  99. Winkler IG, Lévesque J-P (2006) Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 34:996–1009

  100. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158

  101. Yin T, Li L (2006) The stem cell niches in bone. J Clin Investig 116:1195–1201

  102. Yoon K-A, Cho H-S, Shin H-I, Cho J-Y (2012) Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration. Stem Cells Dev 21:3391–3402

  103. Youn BS, Mantel C, Broxmeyer HE (2000) Chemokines, chemokine receptors and hematopoiesis. Immunol Rev 177:150–174

  104. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG (2010) microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107:8231–8236

  105. Zhang Y, Yang P, Wang X-F (2013) Microenvironmental regulation of cancer metastasis by mirnas. Trends Cell Biol 24:153–160

Download references


We are grateful to all our colleagues in the Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy.

Authors’ contributions

Najmaldin Saki and Richard E. Kast conceived the manuscript and revised it; Neda Ketabchi, Mohammad Shahjahani and Ahmad Ahmadzadeh wrote the manuscript; Kaveh Jaseb and Saeid Shahrabi contributors helped writing final version of manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Correspondence to Najmaldin Saki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, A., Kast, R.E., Ketabchi, N. et al. Regulatory effect of chemokines in bone marrow niche. Cell Tissue Res 361, 401–410 (2015). https://doi.org/10.1007/s00441-015-2129-4

Download citation


  • Chemokines
  • Stem cell niche
  • Hematopoietic stem cells
  • Metastasis