Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Expression of pluripotency factors in echinoderm regeneration

Abstract

Cell dedifferentiation is an integral component of post-traumatic regeneration in echinoderms. As dedifferentiated cells become multipotent, we asked if this spontaneous broadening of developmental potential is associated with the action of the same pluripotency factors (known as Yamanaka factors) that were used to induce pluripotency in specialized mammalian cells. In this study, we investigate the expression of orthologs of the four Yamanaka factors in regeneration of two different organs, the radial nerve cord and the digestive tube, in the sea cucumber Holothuria glaberrima. All four pluripotency factors are expressed in uninjured animals, although their expression domains do not always overlap. In regeneration, the expression levels of the four genes were not regulated in a coordinated way, but instead showed different dynamics for individual genes and also were different between the radial nerve and the gut. SoxB1, the ortholog of the mammalian Sox2, was drastically downregulated in the regenerating intestine, suggesting that this factor is not required for dedifferentiation/regeneration in this organ. On the other hand, during the early post-injury stage, Myc, the sea cucumber ortholog of c-Myc, was significantly upregulated in both the intestine and the radial nerve cord and is therefore hypothesized to play a central role in dedifferentiation/regeneration of various tissue types.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ashton GH, Morton JP, Myant K, Phesse TJ, Ridgway RA, Marsh V, Wilkins JA, Athineos D, Muncan V, Kemp R, Neufeld K, Clevers H, Brunton V, Winton DJ, Wang X, Sears RC, Clarke AR, Frame MC, Sansom OJ (2010) Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell 19(2):259–269. doi:10.1016/j.devcel.2010.07.015

  2. Bhavsar RB, Tsonis PA (2014) Exogenous Oct-4 inhibits lens transdifferentiation in the newt Notophthalmus viridescens. PLoS One 9(7):e102,510

  3. Brockes JP, Gates PB (2014) Mechanisms underlying vertebrate limb regeneration: lessons from the salamander. Biochem Soc Trans 42(3):625–630. doi:10.1042/BST20140002

  4. Candelaria AG, Murray G, File SK, García-Arrarás JE (2006) Contribution of mesenterial muscle dedifferentiation to intestine regeneration in the sea cucumber Holothuria glaberrima. Cell Tissue Res 325(1):55–65. doi:10.1007/s00441-006-0170-z

  5. Christen B, Robles V, Raya M, Paramonov I, Izpisúa Belmonte JC (2010) Regeneration and reprogramming compared. BMC Biol 8:5. doi:10.1186/1741-7007-8-5

  6. Feral J, Massin C (1982) Digestive system: Holothuroidea. In: Jangoux M, Lawrence J (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 192–212

  7. Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M (2006) Open software for biologists: from famine to feast. Nat Biotechnol 24(7):801–803. doi:10.1038/nbt0706-801

  8. Gallant P (2006) Myc/Max/Mad in invertebrates: the evolution of the Max network. Curr Top Microbiol Immunol 302:235–253

  9. García-Arrarȧs JE, Estrada-Rodgers L, Santiago R, Torres II, Díaz-Miranda L, Torres-Avillȧn I (1998) Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J Exp Zool 281(4):288–304

  10. Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50(4):528–535. doi:10.1093/icb/icq022

  11. Hasegawa K, Chang YW, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2005) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193(2):394–410. doi:10.1016/j.expneurol.2004.12.024

  12. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006) Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300(1):90–107. doi:10.1016/j.ydbio.2006.08.033

  13. Kiyota T, Kato A, Altmann CR, Kato Y (2008) The POU homeobox protein Oct-1 regulates radial glia formation downstream of Notch signaling. Dev Biol 315(2):579–592. doi:10.1016/j.ydbio.2007.12.013

  14. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39(12):2195–2214. doi:10.1016/j.biocel.2007.05.019

  15. Luz-Madrigal A, Grajales-Esquivel E, McCorkle A, DiLorenzo AM, Barbosa-Sabanero K, Tsonis PA, Del Rio-Tsonis K (2014) Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol 12(1):28. doi:10.1186/1741-7007-12-28

  16. Maddox J, Shakya A, South S, Shelton D, Andersen JN, Chidester S, Kang J, Gligorich KM, Jones D A, Spangrude GJ, Welm B E, Tantin D (2012) Transcription factor oct1 is a somatic and cancer stem cell determinant. PLoS Genet 8(11):e1003,048. doi:10.1371/journal.pgen.1003048

  17. Mahani A, Henriksson J, Wright APH (2013) Origins of Myc proteins–using intrinsic protein disorder to trace distant relatives. PLoS One 8(9):e75,057. doi:10.1371/journal.pone.0075057

  18. Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238(6):1613–1616. doi:10.1002/dvdy.21959

  19. Mashanov V, Zueva O, Heinzeller T, Dolmatov I (2006) Ultrastructure of the circumoral nerve ring and the radial nerve cords in holothurians (Echinodermata). Zoomorphology 125(1):27–38. doi:10.1007/s00435-005-0010-9

  20. Mashanov VS, Dolmatov IY, Heinzeller T (2005) Transdifferentiation in holothurian gut regeneration. Biol Bull 209(3):184–193

  21. Mashanov VS, Zueva OR, Heinzeller T (2008) Regeneration of the radial nerve cord in a holothurian: a promising new model system for studying post-traumatic recovery in the adult nervous system. Tissue Cell 40(5):351–372. doi:10.1016/j.tice.2008.03.004

  22. Mashanov VS, Zueva OR, Rojas-Catagena C, García-Arrarás JE (2010) Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Dev Biol 10:117. doi:10.1186/1471-213X-10-117

  23. Mashanov VS, Zueva OR, Garcia-Arraras JE (2012a) Expression of Wnt9, TCTP, and Bmp1/Tll in sea cucumber visceral regeneration. Gene Expr Patterns 12(1-2):24–35. doi:10.1016/j.gep.2011.10.003

  24. Mashanov VS, Zueva OR, García-Arrarás JE (2012b) Posttraumatic regeneration involves differential expression of long terminal repeat (LTR) retrotransposons. Dev Dyn 241(10):1625–1636

  25. Mashanov VS, Zueva OR, García-Arrarás JE (2012c) Retrotransposons in animal regeneration: overlooked components of the regenerative machinery? Mob Genet Elements 2(5):244–247. doi:10.4161/mge.22644

  26. Mashanov VS, Zueva OR, García-Arrarás JE (2013) Radial glial cells play a key role in echinoderm neural regeneration. BMC Biology 11(1):49. http://www.biomedcentral.com/1741-7007/11/49

  27. Mashanov VS, Zueva O, García-Arrarás JE (2014a) Chapter Seven - Postembryonic Organogenesis of the Digestive Tube: Why Does It Occur in Worms and Sea Cucumbers but Fail in Humans? In: Galliot B (ed) Mechanisms of regeneration, current topics in developmental biology, vol 108. Academic Press, pp 185–216. doi:10.1016/B978-0-12-391498-9.00006-1

  28. Mashanov VS, Zueva OR, García-Arrarás JE (2014b) Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics 15(1):357. doi:10.1186/1471-2164-15-357

  29. Materna SC, Howard-Ashby M, Gray RF, Davidson EH (2006) The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev Biol 300(1):108–120. doi:10.1016/j.ydbio.2006.08.032

  30. Matz M V, Wright R M, Scott J G (2013) No control genes required: Bayesian analysis of qRT-PCR data. PLoS One 8(8):e71,448. doi:10.1371/journal.pone.0071448

  31. McConnell BB, Yang VW (2010) Mammalian Krüppel-like factors in health and diseases. Physiol Rev 90(4):1337–1381. doi:10.1152/physrev.00058.2009

  32. Morita M, Futami K, Zhang H, Kubokawa K, Ojima Y, Okamoto N (2009) Evolutionary analysis of amphioxus myc gene. J Tokyo Univ Mar Sci Technol 5:11–16

  33. Mosher C (1956) Observation on evisceration and visceral regeneration in the sea-cucumber, Actinopyga agassizi Selenka. Zoologica (NY) 41:17–26

  34. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. doi:10.1038/nprot.2006.236

  35. Perry KJ, Thomas AG, Henry JJ (2013) Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells. Dev Biol 374(2):281–294. doi:10.1016/j.ydbio.2012.12.005

  36. Pevny L, Placzek M (2005) Sox genes and neural progenitor identity. Curr Opin Neurobiol 15(1):7–13. doi:10.1016/j.conb.2005.01.016

  37. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  38. Range R, Lepage T (2011) Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo. Dev Biol 357(2):440–449. doi:10.1016/j.ydbio.2011.07.005

  39. Shi G, Jin Y (2010) Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 1(5):39. doi:10.1186/scrt39

  40. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

  41. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

  42. Tantin D (2013) Oct transcription factors in development and stem cells: insights and mechanisms. Development 140(14):2857–2866. doi:10.1242/dev.095927

  43. Wei Z, Angerer RC, Angerer LM (2011) Direct development of neurons within foregut endoderm of sea urchin embryos. Proc Natl Acad Sci U S A 108(22):9143–9147. doi:10.1073/pnas.1018513108

Download references

Acknowledgments

The study was supported by grants from the NIH (1SC1GM084770-01, 1R03NS065275-01) and the NSF (IOS-0842870, IOS-1252679), as well as by the University of Puerto Rico.

Author information

Correspondence to Vladimir S. Mashanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 55.0 KB)

(PDF 39.7 KB)

(PDF 9.76 KB)

(PDF 9.75 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mashanov, V.S., Zueva, O.R. & García-Arrarás, J.E. Expression of pluripotency factors in echinoderm regeneration. Cell Tissue Res 359, 521–536 (2015). https://doi.org/10.1007/s00441-014-2040-4

Download citation

Keywords

  • Regeneration
  • Dedifferentiation
  • Pluripotency factors
  • Gene expression
  • Echinodermata