Skip to main content
Log in

Distribution of peptidergic populations in the human dentate gyrus (Somatostatin [SOM-28, SOM-12] and Neuropeptide Y [NPY]) during postnatal development

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The postnatal development of the human hippocampal formation establishes the time and place at which we start autobiographical memories. However, data concerning the maturation of the neurochemical phenotypes characteristic of interneurons in the human hippocampus are scarce. We have studied the perinatal and postnatal changes of the dentate gyrus (DG) interneuron populations at three rostrocaudal levels. Immunohistochemically identified neurons and fibers for somatostatin (SOM-12 and SOM-28) and neuropeptide Y (NPY) and the co-localization of SOM-28 and NPY were analyzed. In total, 13 cases were investigated from late pregnancy (1 case), perinatal period (6 cases), first year (1 case), early infancy (3 cases), and late infancy (2 cases). Overall, the pattern of distribution of these peptides in the DG was similar to that of the adult. The distribution of cells was charted, and the cell density (number of positive cells/mm2) was calculated. The highest density corresponded to the polymorphic cell layer and was higher at pre- and perinatal periods. At increasing ages, neuron density modifications revealed a decrease from 5 postnatal months onward. In contrast, by late infancy, two immunoreactive bands for SOM-28 and NPY in the molecular layer were much better defined. Double-immunohistochemistry showed that NPY-positive neurons co-localized with SOM-28, whereas some fibers contained only one or other of the neuropeptides. Thus, this peptidergic population, presumably inhibitory, probably has a role in DG maturation and its subsequent functional activity in memory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CA1:

Ammonic hippocampal field 1

CA2:

Ammonic hippocampal field 2

CA3:

Ammonic hippocampal field 3

DG:

Dentate gyrus

GW:

Gestational weeks

HF:

Hippocampal formation

LTP:

Long term potentiation

NPY:

Neuropeptide Y

SOM-12:

Somatostatin (1–12)

SOM-28:

Somatostatin 28

References

  • Abraham H, Veszpremi B, Gomori E, Kovacs K, Kravjak A, Seress L (2007) Unaltered development of the archi- and neocortex in prematurely born infants: genetic control dominates in proliferation, differentiation and maturation of cortical neurons. Prog Brain Res 164:3–22

    Article  PubMed  Google Scholar 

  • Allen JM, McGregor GP, Woodhams PL, Polak JM, Bloom SR (1984) Ontogeny of a novel peptide, neuropeptide Y (NPY) in rat brain. Brain Res 303:197–200

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Insausti R, Campbell MJ (1988) Distribution of somatostatin immunoreactivity in the human dentate gyrus. J Neurosci 8:3306–3316

    PubMed  CAS  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development. I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367:274–292

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Mishkin M (1994) Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys. J Neurosci 14:2128–2139

    PubMed  CAS  Google Scholar 

  • Bachevalier J, Vargha-Khadem F (2005) The primate hippocampus: ontogeny, early insult and memory. Curr Opin Neurobiol 15:168–174

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Brickson M, Hagger C (1993) Limbic-dependent recognition memory in monkeys develops early in infancy. Neuroreport 4:77–80

    Article  PubMed  CAS  Google Scholar 

  • Bakst I, Morrison JH, Amaral DG (1985) The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation. J Comp Neurol 236:423–442

    Article  PubMed  CAS  Google Scholar 

  • Baraban SC, Tallent MK (2004) Interneuron diversity series: interneuronal neuropeptides-endogenous regulators of neuronal excitability. Trends Neurosci 27:135–142

    Article  PubMed  CAS  Google Scholar 

  • Binaschi A, Bregola G, Simonato M (2003) On the role of somatostatin in seizure control: clues from the hippocampus. Rev Neurosci 14:285–301

    Article  PubMed  CAS  Google Scholar 

  • Bouras C, Magistretti PJ, Morrison JH, Constantinidis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol 260:201–223

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Kohler C, Haesler U, Lang W, Yasargil G (1986) Distribution of neurons and axons immunoreactive with antisera against neuropeptide Y in the normal human hippocampus. J Comp Neurol 248:360–375

    Article  PubMed  CAS  Google Scholar 

  • Coveñas R, Aguirre JA, de Leon M, Alonso JR, Narvaez JA, Arevalo R, Gonzalez-Baron S (1990) Distribution of neuropeptide Y-like immunoreactive cell bodies and fibers in the brain stem of the cat. Brain Res Bull 25:675–683

    Article  PubMed  Google Scholar 

  • Coveñas R, Mangas A, Medina LE, Sánchez ML, Aguilar LA, Díaz-Cabiale Z, Narváez JA (2011) Mapping of somatostatin-28 (1–12) in the alpaca diencephalon. J Chem Neuroanat 42:89–98

    Article  PubMed  Google Scholar 

  • de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266

    Article  PubMed  Google Scholar 

  • de Leon M, Covenas R, Narvaez JA, Tramu G, Aguirre JA, Gonzalez-Baron S (1991) Somatostatin-28 (1–12)-like immunoreactivity in the cat diencephalon. Neuropeptides 19:107–117

    Article  PubMed  Google Scholar 

  • Fitzpatrick-McElligott S, Card JP, O’Kane TM, Baldino F Jr (1991) Ontogeny of somatostatin mRNA-containing perikarya in the rat central nervous system. Synapse 7:123–134

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Hohmann C, Coyle JT (1990) Developmental expression of somatostatin in mouse brain. I. Immunocytochemical studies. Brain Res Dev Brain Res 53:6–25

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Furtinger S, Pirker S, Czech T, Baumgartner C, Ransmayr G, Sperk G (2001) Plasticity of Y1 and Y2 receptors and neuropeptide Y fibers in patients with temporal lobe epilepsy. J Neurosci 21:5804–5812

    PubMed  CAS  Google Scholar 

  • Gogtay N, Nugent TF 3rd, Herman DH, Ordonez A, Greenstein D, Hayashi KM, Clasen L, Toga AW, Giedd JN, Rapoport JL, Thompson PM (2006) Dynamic mapping of normal human hippocampal development. Hippocampus 16:664–672

    Article  PubMed  Google Scholar 

  • Gray WP (2008) Neuropeptide Y signalling on hippocampal stem cells in health and disease. Mol Cell Endocrinol 288:52–62

    Article  PubMed  CAS  Google Scholar 

  • Guntern R, Vallet PG, Bouras C, Constantinidis J (1989) An improved immunohistostaining procedure for peptides in human brain. Experientia 45:159–161

    Article  PubMed  CAS  Google Scholar 

  • Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65:21–37

    Article  PubMed  CAS  Google Scholar 

  • Insausti R, Cebada-Sanchez S, Marcos P (2010) Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol 206:1–86

    Article  PubMed  Google Scholar 

  • Iritani S, Kuroki N, Niizato K, Ikeda K (2000) Morphological changes in neuropeptide Y-positive fiber in the hippocampal formation of schizophrenics. Prog Neuropsychopharmacol Biol Psychiatry 24:241–249

    Article  PubMed  CAS  Google Scholar 

  • Jinno S (2009) Structural organization of long-range GABAergic projection system of the hippocampus. Front Neuroanat 3:1–9

    Article  Google Scholar 

  • Jinno S, Kosaka T (2003) Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: quantitative analysis with optical disector. J Comp Neurol 461:333–349

    Article  PubMed  CAS  Google Scholar 

  • Jinno S, Kosaka T (2006) Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 56:229–245

    Article  PubMed  CAS  Google Scholar 

  • Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, Hirsch J, Dzhala V, Berger B, Ben-Ari Y (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21:9770–9781

    PubMed  CAS  Google Scholar 

  • Kowalski C, Micheau J, Corder R, Gaillard R, Conte-Devolx B (1992) Age-related changes in cortico-releasing factor, somatostatin, neuropeptide Y, methionine enkephalin and beta-endorphin in specific rat brain areas. Brain Res 582:38–46

    Article  PubMed  CAS  Google Scholar 

  • Lavenex P, Banta Lavenex P, Amaral DG (2007) Postnatal development of the primate hippocampal formation. Dev Neurosci 29:179–192

    Article  PubMed  CAS  Google Scholar 

  • Lavenex P, Lavenex PB, Bennett JL, Amaral DG (2009) Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol 512:27–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledri M, Sorensen AT, Erdelyi F, Szabo G, Kokaia M (2010) Tuning afferent synapses of hippocampal interneurons by neuropeptide Y. Hippocampus 21:198–211

    Article  Google Scholar 

  • Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143(4 Suppl):S35–S45

    Article  PubMed  CAS  Google Scholar 

  • Lotstra F, Schiffmann SN, Vanderhaeghen JJ (1989) Neuropeptide Y-containing neurons in the human infant hippocampus. Brain Res 478:211–226

    Article  PubMed  CAS  Google Scholar 

  • Matyas F, Freund TF, Gulyas AI (2004) Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus 14:460–481

    Article  PubMed  Google Scholar 

  • Morrison JH, Benoit R, Magistretti PJ, Ling N, Bloom FE (1982) Immunohistochemical distribution of pro-somatostatin-related peptides in hippocampus. Neurosci Lett 34:137–142

    Article  PubMed  CAS  Google Scholar 

  • Morys JM, Kowianski P, Morys J (2002) Distribution of nitric oxide synthase and neuropeptide Y neurones during the development of the hippocampal formation in the rat. Folia Morphol (Warsz) 61:221–232

    Google Scholar 

  • Naus CC, Morrison JH, Bloom FE (1988) Development of somatostatin-containing neurons and fibers in the rat hippocampus. Brain Res 468:113–121

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, Bachevalier J (1999) Neonatal aspiration lesions of the hippocampal formation impair visual recognition memory when assessed by paired-comparison task but not by delayed nonmatching-to-sample task. Hippocampus 9:609–616

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, de Schonen S (1994) Recognition memory in 3- to 4-day-old human neonates. Neuroreport 5:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • Ramos B, Baglietto-Vargas D, del Rio JC, Moreno-Gonzalez I, Santa-Maria C, Jimenez S, Caballero C, Lopez-Tellez JF, Khan ZU, Ruano D, Gutierrez A, Vitorica J (2006) Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol Aging 27:1658–1672

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, French ED (1984) Pro-somatostatin related peptides alter the discharge rate of rat cortical and hippocampal neurons in vivo: an iontophoretic study. Soc Neurosci Abstr 10:810

    Google Scholar 

  • Sperk G, Hamilton T, Colmers WF (2007) Neuropeptide Y in the dentate gyrus. Prog Brain Res 163:285–297

    Article  PubMed  CAS  Google Scholar 

  • Tallent MK (2007) Somatostatin in the dentate gyrus. Prog Brain Res 163:265–284

    Article  PubMed  CAS  Google Scholar 

  • Tallent MK, Qiu C (2008) Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 286:96–103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilcox BJ, Unnerstall JR (1990) Identification of a subpopulation of neuropeptide Y-containing locus coeruleus neurons that project to the entorhinal cortex. Synapse 6:284–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted on samples from the Andalusian Public Health System Biobank (ISCIII-Red de Biobancos RD09/0076/00085). The authors are grateful to Drs. Tuñón and García-Bragado from the Navarra Department of Health, Dr. Rábano from Alcorcón Foundation Hospital, and the Pathology Service of the University Hospital in Albacete (Dr. Atiénzar) for the provision of human infant tissue and to Dr. Tramu (Université de Bordeaux I, France) for kindly providing NPY and SOM-12 antibodies. The authors also thank the technical team of the Human Neuroanatomy Laboratory of the University of Castilla-La Mancha and the technicians of the Virgen del Rocío Hospital for their crucial contribution to the preparation of the human brain tissue. Special thanks are extended to the donors and their families.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marcos.

Additional information

This study was supported by the NINDS (grant 2R01NS016980) and the Junta de Comunidades de Castilla-La Mancha, Spain (grants PC108-0113 and PI-2006/14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebada-Sánchez, S., Insausti, R., González-Fuentes, J. et al. Distribution of peptidergic populations in the human dentate gyrus (Somatostatin [SOM-28, SOM-12] and Neuropeptide Y [NPY]) during postnatal development. Cell Tissue Res 358, 25–41 (2014). https://doi.org/10.1007/s00441-014-1929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1929-2

Keywords

Navigation