Cell and Tissue Research

, Volume 348, Issue 1, pp 167–176 | Cite as

Neuroimmune connections in ovine pharyngeal tonsil: potential site for prion neuroinvasion

  • Vinciane ToppetsEmail author
  • Joelle Piret
  • Nathalie Kirschvink
  • Frederic Lantier
  • Isabelle Lantier
  • Patricia Berthon
  • Georges Daube
  • Laurent Massart
  • Luc Grobet
  • Nadine Antoine
Regular Article


Recent studies have established the involvement of nasal-associated lymphoid tissues, mainly the pharyngeal tonsil, in prion pathogenesis. However, the mechanisms of the associated neuroinvasion are still debated. To determine potential sites for prion neuroinvasion inside the ovine pharyngeal tonsil, the topography of heavy (200 kDa) and light (70 kDa) neurofilaments and of glial fibrillar acidic protein has been semi-quantitatively analysed inside the various compartments of the tonsil. The results show that the most innervated areas are the interfollicular area and the connective tissue located beneath the respiratory epithelium. The existence of rare synapses between follicular dendritic cells and nerve fibres inside the germinal centre indicates that this mechanism of neuroinvasion is possible but, since germinal centres of lymphoid follicles are poorly innervated, other routes of neuroinvasion are likely. The host PRNP genotype does not influence the pattern of innervation in these various tonsil compartments, unlike ageing during which an increase of nerve endings occurs in a zone of high trafficking cells beneath the respiratory epithelium. A minimal age-related increase of innervation inside the lymphoid follicles has also been observed. An increase in nerve fibre density around the lymphoid follicles, in an area rich in mobile cells such as macrophages and dendritic cells capable of capturing and conveying pathogen prion protein (PrPd), might ensure more efficient infectivity, not in the early phase but in the advanced phase of lymphoinvasion after the amplification of PrPd; alternatively, this area might even act as a direct site of entry during neuroinvasion.


Sheep Scrapie Pharyngeal tonsil Follicular dendritic cell Innervation 



We acknowledge the technical assistance of Dr. P. Hubert. We thank Professor E. Heinen from the Human Histology Unit of The Faculty of Medicine of the University of Liege who kindly provided the FDC-B1 monoclonal antibody.


  1. Andreoletti O, Berthon P, Marc D, Sarradin P, Grosclaude J, Keulen L van, Schelcher F, Elsen JM, Lantier F (2000) Early accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol 81:3115–3126PubMedGoogle Scholar
  2. Baylis M, Goldmann W, Houston F, Cairns D, Chong A, Ross A, Smith A, Hunter N, McLean AR (2002) Scrapie epidemic in a fully PrP-genotyped sheep flock. J Gen Virol 83:2907–2914PubMedGoogle Scholar
  3. Baylis M, Chihota C, Stevenson E, Goldmann W, Smith A, Sivam K, Tongue S, Gravenor MB (2004) Risk of scrapie in British sheep of different prion protein genotype. J Gen Virol 85:2735–2740PubMedCrossRefGoogle Scholar
  4. Bessen RA, Martinka S, Kelly J, Gonzalez D (2009) Role of the lymphoreticular system in prion neuroinvasion from the oral and nasal mucosa. J Virol 83:6435–6445PubMedCrossRefGoogle Scholar
  5. Bessen RA, Shearin H, Martinka S, Boharski R, Lowe D, Wilham JM, Caughey B, Wiley JA (2010) Prion shedding from olfactory neurons into nasal secretions. PLoS Pathog 6:e1000837PubMedCrossRefGoogle Scholar
  6. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5:1308–1312PubMedCrossRefGoogle Scholar
  7. Casteleyn C, Van den Broeck W, Simoens P (2007) Histological characteristics and stereological volume assessment of the ovine tonsils. Vet Immunol Immunopathol 120:124–135PubMedCrossRefGoogle Scholar
  8. Casteleyn C, Cornelissen M, Simoens P, Van den Broeck W (2010) Ultramicroscopic examination of the ovine tonsillar epithelia. Anat Rec (Hoboken) 293:879–889CrossRefGoogle Scholar
  9. Cazaubon S, Viegas P, Couraud PO (2007) Functions of prion protein PrPc. Med Sci (Paris) 23:741–745CrossRefGoogle Scholar
  10. Ciriaco E, Ricci A, Bronzetti E, Mammola CL, Germana G, Vega JA (1995) Age-related changes of the noradrenergic and acetylcholinesterase reactive nerve fibres innervating the pigeon bursa of Fabricius. Ann Anat 177:237–242PubMedCrossRefGoogle Scholar
  11. Defaweux V, Dorban G, Antoine N, Piret J, Gabriel A, Jacqmot O, Falisse-Poirier N, Flandroy S, Zorzi D, Heinen E (2007) Neuroimmune connections in jejunal and ileal Peyer’s patches at various bovine ages: potential sites for prion neuroinvasion. Cell Tissue Res 329:35–44PubMedCrossRefGoogle Scholar
  12. Dorban G, Defaweux V, Demonceau C, Flandroy S, Van Lerberghe PB, Falisse-Poirrier N, Piret J, Heinen E, Antoine N (2007) Interaction between dendritic cells and nerve fibres in lymphoid organs after oral scrapie exposure. Virchows Arch 451:1057–1065PubMedCrossRefGoogle Scholar
  13. Flechsig E, Weissmann C (2004) The role of PrP in health and disease. Curr Mol Med 4:337–353PubMedCrossRefGoogle Scholar
  14. Follet J, Lemaire-Vieille C, Blanquet-Grossard F, Podevin-Dimster V, Lehmann S, Chauvin JP, Decavel JP, Varea R, Grassi J, Fontes M, Cesbron JY (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76:2434–2439PubMedCrossRefGoogle Scholar
  15. Glatzel M, Heppner FL, Albers KM, Aguzzi A (2001) Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31:25–34PubMedCrossRefGoogle Scholar
  16. Gotow T (2000) Neurofilaments in health and disease. Med Electron Microsc 33:173–199PubMedCrossRefGoogle Scholar
  17. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044PubMedCrossRefGoogle Scholar
  18. Halliday S, Houston F, Hunter N (2005) Expression of PrPC on cellular components of sheep blood. J Gen Virol 86:1571–1579PubMedCrossRefGoogle Scholar
  19. Hamir AN, Kunkle RA, Richt JA, Miller JM, Greenlee JJ (2008) Experimental transmission of US scrapie agent by nasal, peritoneal, and conjunctival routes to genetically susceptible sheep. Vet Pathol 45:7–11PubMedCrossRefGoogle Scholar
  20. Heggebo R, Press CM, Gunnes G, Lie KI, Tranulis MA, Ulvund M, Groschup MH, Landsverk T (2000) Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J Gen Virol 81:2327–2337PubMedGoogle Scholar
  21. Horiuchi M, Yamazaki N, Ikeda T, Ishiguro N, Shinagawa M (1995) A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. J Gen Virol 76:2583–2587PubMedCrossRefGoogle Scholar
  22. Hunter N, Goldmann W, Foster JD, Cairns D, Smith G (1997) Natural scrapie and PrP genotype: case-control studies in British sheep. Vet Rec 141:137–140PubMedCrossRefGoogle Scholar
  23. Hunter N, Foster J, Chong A, McCutcheon S, Parnham D, Eaton S, MacKenzie C, Houston F (2002) Transmission of prion diseases by blood transfusion. J Gen Virol 83:2897–2905PubMedGoogle Scholar
  24. Jeffrey M, Gonzalez L (2007) Scrapie. In: Aitken ID (ed) Diseases of sheep, 4th edn. Blackwell, Edinburgh, pp 242–250Google Scholar
  25. Jeffrey M, McGovern G, Goodsir CM, Brown KL, Bruce ME (2000) Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J Pathol 191:323–332PubMedCrossRefGoogle Scholar
  26. Jessen KR, Morgan L, Stewart HJ, Mirsky R (1990) Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109:91–103PubMedGoogle Scholar
  27. Kincaid AE, Bartz JC (2007) The nasal cavity is a route for prion infection in hamsters. J Virol 81:4482–4491PubMedCrossRefGoogle Scholar
  28. Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332PubMedCrossRefGoogle Scholar
  29. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217PubMedCrossRefGoogle Scholar
  30. Mabbott NA, Mackay F, Minns F, Bruce ME (2000) Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med 6:719–720PubMedCrossRefGoogle Scholar
  31. Madden KS, Bellinger DL, Felten SY, Snyder E, Maida ME, Felten DL (1997) Alterations in sympathetic innervation of thymus and spleen in aged mice. Mech Ageing Dev 94:165–175PubMedCrossRefGoogle Scholar
  32. Maignien T, Lasmezas CI, Beringue V, Dormont D, Deslys JP (1999) Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J Gen Virol 80:3035–3042PubMedGoogle Scholar
  33. Marruchella G, Ligios C, Baffoni M, Cancedda MG, Demontis F, Donatucci G, Chiocchetti R, Clavenzani P, Lalatta-Costerbosa G, Di Guardo G (2009) Ileal tract and Peyer’s patch innervation in scrapie-free versus scrapie-affected ovines. Arch Virol 154:709–714PubMedCrossRefGoogle Scholar
  34. Martins VR, Mercadante AF, Cabral AL, Freitas AR, Castro RM (2001) Insights into the physiological function of cellular prion protein. Braz J Med Biol Res 34:585–595PubMedCrossRefGoogle Scholar
  35. McGovern G, Martin S, Gonzalez L, Witz J, Jeffrey M (2009) Frequency and distribution of nerves in scrapie-affected and unaffected Peyer’s patches and lymph nodes. Vet Pathol 46:233–240PubMedGoogle Scholar
  36. Melot F, Defaweux V, Jolois O, Collard A, Robert B, Heinen E, Antoine N (2004) FDC-B1: a new monoclonal antibody directed against bovine follicular dendritic cells. Vet Immunol Immunopathol 97:1–9PubMedCrossRefGoogle Scholar
  37. Miller MW, Williams ES, Hobbs NT, Wolfe LL (2004) Environmental sources of prion transmission in mule deer. Emerg Infect Dis 10:1003–1006PubMedCrossRefGoogle Scholar
  38. Notturno F, Caporale CM, De Lauretis A, Uncini A (2008) Glial fibrillary acidic protein: a marker of axonal Guillain-Barre syndrome and outcome. Muscle Nerve 38:899–903PubMedCrossRefGoogle Scholar
  39. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, Fu YX, Lipp M, Aguzzi A (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425:957–962PubMedCrossRefGoogle Scholar
  40. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  41. Race R, Jenny A, Sutton D (1998) Scrapie infectivity and proteinase K-resistant prion protein in sheep placenta, brain, spleen, and lymph node: implications for transmission and antemortem diagnosis. J Infect Dis 178:949–953PubMedCrossRefGoogle Scholar
  42. Sbriccoli M, Cardone F, Valanzano A, Lu M, Graziano S, De Pascalis A, Ingrosso L, Zanusso G, Monaco S, Bentivoglio M, Pocchiari M (2009) Neuroinvasion of the 263K scrapie strain after intranasal administration occurs through olfactory-unrelated pathways. Acta Neuropathol 117:175–184PubMedCrossRefGoogle Scholar
  43. Seeger H, Heikenwalder M, Zeller N, Kranich J, Schwarz P, Gaspert A, Seifert B, Miele G, Aguzzi A (2005) Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 310:324–326PubMedCrossRefGoogle Scholar
  44. Van Keulen LJM, Vromans MEW, Van Zijderveld FG (2002) Early and late pathogenesis of natural scrapie infection in sheep. APMIS 110:23–32PubMedCrossRefGoogle Scholar
  45. Vascellari M, Nonno R, Mutinelli F, Bigolaro M, Di Bari MA, Melchiotti E, Marcon S, D'Agostino C, Vaccari G, Conte M, De Grossi L, Rosone F, Giordani F, Agrimi U (2007) PrPSc in salivary glands of scrapie-affected sheep. J Virol 81:4872–4876PubMedCrossRefGoogle Scholar
  46. Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2:861–871PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vinciane Toppets
    • 1
    Email author
  • Joelle Piret
    • 1
  • Nathalie Kirschvink
    • 2
  • Frederic Lantier
    • 3
  • Isabelle Lantier
    • 3
  • Patricia Berthon
    • 3
  • Georges Daube
    • 4
  • Laurent Massart
    • 5
  • Luc Grobet
    • 1
  • Nadine Antoine
    • 1
  1. 1.Department of Morphology and Pathology, Laboratory of Animal Histology and Embryology, Faculty of Veterinary MedicineUniversity of LiegeLiegeBelgium
  2. 2.Animal Physiology, Veterinary Department, Faculty of SciencesUniversity of Namur FUNDPNamurBelgium
  3. 3.Laboratory of Infectious Pathology and ImmunologyINRANouzillyFrance
  4. 4.DNA-Vision Agrifood, Faculty of Veterinary MedicineUniversity of LiegeLiegeBelgium
  5. 5.Department of Animal productions, Biostatistic and Bioinformatic Applied to Veterinary Sciences Unit, Faculty of Veterinary MedicineUniversity of LiegeLiegeBelgium

Personalised recommendations