Skip to main content
Log in

Altered tissue behavior of a non-aneurysmal descending thoracic aorta in the mouse model of Marfan syndrome

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Aortic aneurysm is predominantly found in the ascending aorta in patients with Marfan syndrome (MFS). However, descending aortic disease has emerged as a problem since people are living longer because of improved medical and surgical management of the ascending aorta. Diagnostic procedures before disease onset and the mechanisms involved in the transition of normal aortic tissue to aneurysm remain unclear. We determined signs of descending aortic disease before disease onset in mice with a mutation in the fibrillin 1 gene (Fbn1 +/C1039G), a validated mouse model of disease susceptibility and progression of aortic aneurysm of MFS. We analyzed a tubular unfixed non-aneurysmal descending thoracic aorta from 8-month-old wild-type and Fbn1 +/C1039G mice by a tubular biaxial tester that works in conjunction with a two-photon nonlinear microscope. Fbn1 +/C1039G mouse aorta was more compliant in the circumferential direction. Two-photon imaging showed defective organization of adventitial collagen fibers in the pressurized aortas of Fbn1 +/C1039G mice. Moreover, disruption in the elastic lamina was noted in the absence of aneurysms in pressurized aortas but not unpressurized aortas of Fbn1 +/C1039G mice. At the molecular level, this altered tissue behavior in non-aneurysmal descending aortas of Fbn1 +/C1039G mice was accompanied by an increasing trend of canonical but not noncanonical, transforming growth factor-β (TGFβ) signaling. Finally, assays of in vitro collagen lattice formation in mouse wild-type and TGFβ1-deficient embryonic fibroblasts indicate that TGFβ1 can regulate collagen organization. The ability to reveal the presence of altered biomechanics and microstructure coupled with subtle changes in TGFβ signaling provides a novel surrogate measure of tissue susceptibility to aneurysm before disease onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brautbar A, LeMaire SA, Franco LM, Coselli JS, Milewicz DM, Belmont JW (2010) FBN1 mutations in patients with descending thoracic aortic dissections. Am J Med Genet A 152A:413–416

    Article  PubMed  CAS  Google Scholar 

  • Carta L, Wagenseil JE, Knutsen RH, Mariko B, Faury G, Davis EC, Starcher B, Mecham RP, Ramirez F (2009) Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Carton RW, Dainauskas J, Clark JW (1962) Elastic properties of single elastic fibers. J Appl Physiol 17:547–551

    PubMed  CAS  Google Scholar 

  • Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR, Sakai LY (2010) In vivo studies of mutant fibrillin-1 microfibrils. J Biol Chem 285:24943–24955

    Article  PubMed  CAS  Google Scholar 

  • Conway SJ, Doetschman T, Azhar M (2011) The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal 11:1509–1524

    Article  PubMed  CAS  Google Scholar 

  • Daugherty A, Rateri DL, Charo IF, Owens Iii AP, Howatt DA, Cassis LA (2010) Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE−/− mice. Clin Sci (Lond) 118:681–689

    Article  CAS  Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    Article  PubMed  CAS  Google Scholar 

  • Eberth JF, Taucer AI, Wilson E, Humphrey JD (2009) Mechanics of carotid arteries in a mouse model of Marfan syndrome. Ann Biomed Eng 37:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365

    Article  PubMed  CAS  Google Scholar 

  • Haskett D, Johnson G, Zhou A, Utzinger U, Vande GJ (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9:725–736

    Article  PubMed  Google Scholar 

  • Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, Erp C van, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361

    Article  PubMed  CAS  Google Scholar 

  • Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23:1–162

    PubMed  CAS  Google Scholar 

  • Kaartinen V, Warburton D (2003) Fibrillin controls TGF-beta activation. Nat Genet 33:331–332

    Article  PubMed  CAS  Google Scholar 

  • Keyes JT, Borowicz SM, Rader JH, Utzinger U, Azhar M, Vande Geest JP (2011a) Design and demonstration of a microbiaxial optomechanical device for multiscale characterization of soft biological tissues with two-photon microscopy. Microsc Microanal 17:167–175

    Article  PubMed  CAS  Google Scholar 

  • Keyes JT, Haskett DG, Utzinger U, Azhar M, Vande Geest JP (2011b) Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J Biomech Eng 133:075001

    Article  PubMed  Google Scholar 

  • Kirkpatrick ND, Hoying JB, Botting SK, Weiss JA, Utzinger U (2006) In vitro model for endogenous optical signatures of collagen. J Biomed Opt 11:054021

    Article  PubMed  Google Scholar 

  • Lindsay ME, Dietz HC (2011) Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473:308–316

    Article  PubMed  CAS  Google Scholar 

  • Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hofstee Y, Jondeau G, Faivre L, Milewicz DM, Pyeritz RE, Sponseller PD, Wordsworth P, De Paepe AM (2010) The revised Ghent nosology for the Marfan syndrome. J Med Genet 47:476–485

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Schoenhoff F, Habashi J, Holm T, Erp C van, Loch D, Carlson OD, Griswold BF, Fu Q, De Backer J, Loeys B, Huso DL, McDonnell NB, Van Eyk JE, Dietz HC (2009) Circulating transforming growth factor-{beta} in Marfan syndrome. Circulation 120:526–532

    Article  PubMed  CAS  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Rifkin DB (2009) Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 21:616–622

    Article  PubMed  CAS  Google Scholar 

  • Rybczynski M, Bernhardt AM, Rehder U, Fuisting B, Meiss L, Voss U, Habermann C, Detter C, Robinson PN, Arslan-Kirchner M, Schmidtke J, Mir TS, Berger J, Meinertz T, von Kodolitsch Y (2008) The spectrum of syndromes and manifestations in individuals screened for suspected Marfan syndrome. Am J Med Genet A 146A:3157–3166

    Article  PubMed  Google Scholar 

  • Schulze-Bauer CA, Regitnig P, Holzapfel GA (2002) Mechanics of the human femoral adventitia including the high-pressure response. Am J Physiol Heart Circ Physiol 282:H2427–H2440

    PubMed  CAS  Google Scholar 

  • Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJ, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332:183–193

    Article  PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

  • Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102:752–760

    Article  PubMed  CAS  Google Scholar 

  • Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  PubMed  CAS  Google Scholar 

  • Zoumi A, Lu X, Kassab GS, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87:2778–2786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Paige Snider and Simon Conway (Indiana University-Purdue University) for providing technical help with collagen contraction assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Azhar.

Additional information

This study was supported, in part, by the National Institutes of Health (grants HL92508, HL105280), The Stephen Michael Schneider & The William J. "Billy" Gieszl Investigator Award (University of Arizona), Arizona Biomedical Research Commission (no. 0901), the American Heart Association-Grant in Aid (10GRNT4580045) and the National Science Foundation (grant 0644570). Imaging was performed on an NIH-sponsored shared device (NIH/NCRR S10RR023737).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haskett, D., Doyle, J.J., Gard, C. et al. Altered tissue behavior of a non-aneurysmal descending thoracic aorta in the mouse model of Marfan syndrome. Cell Tissue Res 347, 267–277 (2012). https://doi.org/10.1007/s00441-011-1270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1270-y

Keywords

Navigation