Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Crustacean neuroendocrine systems and their signaling agents

Abstract

Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Alexandrowicz JS, Carlisle DB (1953) Some experiments on the function of the pericardial organs in Crustacea. J Mar Biol Assoc UK 32:175–192

  2. Amare A, Sweedler JV (2007) Neuropeptide precursors in Tribolium castaneum. Peptides 28:1282–1291

  3. Andrews PM (1973) Ultrastuctural study of the pericardial organ-anterior ramifications complex neurosecretory terminals. Z Zellforsch 144:309–324

  4. Audsley N, Weaver RJ (2006) Analysis of peptides in the brain and corpora cardiaca-corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides 27:512–520

  5. Battelle BA, Kravitz EA (1978) Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J Pharmacol Exp Ther 205:438–448

  6. Bauer DJ (2007) The Daphnia genomics consortium meeting: the genome biology of the model crustacean Daphnia. Expert Rev Proteomics 4:601–602

  7. Beltz BS (1999) Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Tech 44:105–120

  8. Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

  9. Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Struct Dev 32:39–60

  10. Beltz BS, Benton JL, Sullivan JM (2001) Transient uptake of serotonin by newborn olfactory projection neurons. Proc Natl Acad Sci USA 98:12730–12735

  11. Benarroch EE (2009) Neuropeptide Y: its multiple effects in the CNS and potential clinical significance. Neurology 72:1016–1020

  12. Bendtsen JD, Nielsen H, Heijne G von, Brunak S (2004) Improved prediction of signal peptides: signal P 3.0. J Mol Biol 340:783–795

  13. Benton JL, Beltz BS (2001) Effects of embryonic serotonin depletion on olfactory interneurons in lobsters. J Neurobiol 46:193–205

  14. Benton JL, Sandeman DC, Beltz BS (2007) Nitric oxide in the crustacean brain: regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev Dyn 236:3047–3060

  15. Benton JL, Goergen EM, Rogan SC, Beltz BS (2008) Hormonal and synaptic influences of serotonin on adult neurogenesis. Gen Comp Endocrinol 158:183–190

  16. Bliss DE (1951) Metabolic effects of sinus gland or eyestalk removal in the land crab, Gecarcinus lateralis. Anat Rec 111:502–503

  17. Blitz DM, White RS, Saideman SR, Cook A, Christie AE, Nadim F, Nusbaum MP (2008) A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons. J Exp Biol 211:1000–1011

  18. Braak CB van de, Botterblom MH, Taverne N, Muiswinkel WB van, Rombout JH, Knaap WP van der (2002) The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish Shellfish Immunol 13:293–309

  19. Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hyppocampus, as observed in rats grafted with fetal raphe neurons. Eur J Neurosci 12:391–396

  20. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–1042

  21. Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, Sunderland

  22. Callaway JC, Stuart AE (1999) The distribution of histamine and serotonin in the barnacle’s nervous system. Microsc Res Tech 44:94–104

  23. Carlisle DB, Knowles F (1959) Endocrine control in crustaceans. Cambridge University Press, New York

  24. Cashman CR, Hsu YA, Messinger DI, Christie AE, Dickinson PS, Iglesia HO de la, Stemmler EA (2007) Identification of individual-specific variations in peptide complement of crustacean neural tissues using direct tissue MALDI-FTMS. Program no. 140.4. 2007 Neuroscience Meeting Planner. Society for Neuroscience, San Diego (online)

  25. Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunol 23:24–33

  26. Chee MJ, Colmers WF (2008) Y eat? Nutrition 24:869–877

  27. Chen R, Hui L, Sturm RM, Li L (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20:1068–1077

  28. Chen R, Cape SS, Sturm RM, Li L (2010) Mass spectrometric imaging of neuropeptides in decapod crustacean neuronal tissues. Methods Mol Biol 656:451–463

  29. Cheng W, Chieu HT, Tsai CH, Chen JC (2005) Effects of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 19:375–385

  30. Christie AE (2008a) Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. Gen Comp Endocrinol 157:174–185

  31. Christie AE (2008b) In silico analyses of peptide paracrines/hormones in Aphidoidea. Gen Comp Endocrinol 159:67–79

  32. Christie AE, Messinger DI (2005) Hormonal signaling from the crustacean stomatogastric nervous system. Comp Biochem Physiol A 141:S157

  33. Christie AE, Baldwin D, Turrigiano G, Graubard K, Marder E (1995a) Immunocytochemical localization of multiple cholecystokinin-like peptides in the stomatogastric nervous system of the crab Cancer borealis. J Exp Biol 198:263–271

  34. Christie AE, Skiebe P, Marder E (1995b) Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. J Exp Biol 198:2431–2439

  35. Christie AE, Baldwin DH, Marder E, Graubard K (1997) Organization of the stomatogastric neuropil of the crab, Cancer borealis, as revealed by modulator immunocytochemistry. Cell Tissue Res 288:135–148

  36. Christie AE, Edwards JM, Cherny E, Clason TA, Graubard K (2003) Immunocytochemical evidence for nitric oxide- and carbon monoxide-producing neurons in the stomatogastric nervous system of the crayfish Cherax quadricarinatus. J Comp Neurol 467:293–306

  37. Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin M, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K (2004a) The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. J Exp Biol 207:1163–1182

  38. Christie AE, Stein W, Quinlan JE, Beenhakker MP, Marder E, Nusbaum MP (2004b) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 469:153–169

  39. Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Goiney CC, Conterato AJ, Bruns EA, Hsu YW, Li L, Dickinson PS (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714

  40. Christie AE, Cashman CR, Brennan HR, Ma M, Sousa GL, Li L, Stemmler EA, Dickinson PS (2008) Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. Gen Comp Endocrinol 156:246–264

  41. Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH (2010a) Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol 167:164–178

  42. Christie AE, Stemmler EA, Dickinson PS (2010b) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

  43. Christie AE, McCoole MD, Harmon SM, Baer KN, Lenz PH (2011a) Genomic analyses of the Daphnia pulex peptidome. Gen Comp Endocrinol 171:131–150

  44. Christie AE, Chapline MC, Jackson JM, Dowda JK, Hartline N, Malecha SR, Lenz PH (2011b) Identification, tissue distribution and orexigenic activity of neuropeptide F (NPF) in penaeid shrimp. J Exp Biol 214:1386–1396

  45. Christie AE, Nolan DH, Ohno P, Hartline N, Lenz PH (2011c) Identification of chelicerate neuropeptides using bioinformatics of publicly accessible expressed sequence tags. Gen Comp Endocrinol 170:144–155

  46. Chung JS, Webster SG (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas: a possible osmoregulatory role. Gen Comp Endocrinol 147:206–213

  47. Chung JS, Hircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci USA 96:13103–13107

  48. Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166:447–454

  49. Clynen E, Huybrechts J, Verleyen P, De Loof A, Schoofs L (2006) Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry. BMC Genomics 7:201

  50. Colbourne JK, Singan VR, Gilbert DG (2005) wFleaBase: the Daphnia genome database. BMC Bioinform 6:45

  51. Cook IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

  52. Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, vol 3. Neurobiology: structure and function. Academic Press, New York, pp 206–278

  53. Cruz-Bermúdez ND, Marder E (2007) Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis. J Exp Biol 210:2873–2884

  54. Cruz-Bermúdez ND, Fu Q, Kutz-Naber KK, Christie AE, Li L, Marder E (2006) Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer. J Neurochem 97:784–799

  55. De Kleijn DP, Van Herp F (1995) Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comp Biochem Physiol B Biochem Mol Biol 112:573–579

  56. DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6:1782–1791

  57. Delgado JY, Oyola E, Miller MW (2000) Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobster Panulirus argus. J Neurocytol 29:605–619

  58. Dickinson PS, Stemmler EA, Christie AE (2008) The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods. J Exp Biol 211:1434–1447

  59. Dickinson PS, Wiwatpanit T, Gabranski ER, Ackerman RJ, Stevens JS, Cashman CR, Stemmler EA, Christie AE (2009) Identification of SYWKQCAFNAVSCFamide: a broadly conserved crustacean C-type allatostatin-like peptide with both neuromodulatory and cardioactive properties. J Exp Biol 212:1140–1152

  60. Dircksen H, Wilcockson DC, Webster SG (2005) Neuropeptides in a forgotten crustacean neurohaemal organ classic, the postcomissural organs of the shrimp Palaemon serratus. Comp Biochem Physiol A 141:S156–S157

  61. Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol [A] 187:145–154

  62. Dougan PM, Mair GR, Halton DW, Curry WJ, Day TA, Maule AG (2002) Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus. J Comp Neurol 454:58–64

  63. Duan S, Cooke IM (2000) Glutamate and GABA activate different receptors and Cl- conductances in crab peptide-secretory neurons. J Neurophysiol 83:31–37

  64. Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Eur J Biochem 250:727–734

  65. Edwards DH, Kravitz EA (1997) Serotonin, social status and aggression. Curr Opin Neurobiol 7:812–819

  66. Emeson RB, Morabito MV (2005) Food fight: the NPY-serotonin link between aggression and feeding behavior. Sci STKE 277:pe12

  67. Evans PD, Kravitz EA, Talamo BR, Wallace BG (1976) The association of octopamine with specific neurones along lobster nerve trunks. J Physiol (Lond) 262:51–70

  68. Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 142:390–400

  69. Fernlund P, Josefsson L (1968) Chromactivating hormones of Pandalus borealis. Isolation and purification of the red-pigment-concentrating hormone. Biochim Biophys Acta 158:262–273

  70. Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177:173–175

  71. Fingerman M (1966) Neurosecretory control of pigmentary effectors in crustaceans. Am Zool 6:169–179

  72. Fingerman M (1992) Glands and secretion. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, vol 10. Decapod Crustacea. Wiley-Liss, New York, pp 345–394

  73. Flamm RE, Harris-Warrick RM (1986a) Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J Neurophysiol 55:847–865

  74. Flamm RE, Harris-Warrick RM (1986b) Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J Neurophysiol 55:866–881

  75. Florey E, Rathmayer M (1978) The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp Biochem Physiol C 61C:229–237

  76. Fort TJ, Brezina V, Miller MW (2004) Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 92:3455–3470

  77. Fu Q, Goy MF, Li L (2005a) Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. Biochem Biophys Res Commun 337:765–778

  78. Fu Q, Kutz KK, Schmidt JJ, Hsu YW, Messinger DI, Cain SD, Iglesia HO de la, Christie AE, Li L (2005b) Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J Comp Neurol 493:607–626

  79. García U, Onetti C, Valdiosera R, Aréchiga H (1994) Excitatory action of γ-aminobutyric acid (GABA) on crustacean neurosecretory cells. Cell Mol Neurobiol 14:71–88

  80. Gard AL, Lenz PH, Shaw JR, Christie AE (2009) Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol 160:271–287

  81. Glusman S, Kravitz EA (1982) The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J Physiol (Lond) 325:223–241

  82. Goldberg D, Nusbaum MP, Marder E (1988) Substance P-like immunoreactivity in the stomatogastric nervous systems of the crab Cancer borealis and the lobsters Panulirus interruptus and Homarus americanus. Cell Tissue Res 252:515–522

  83. Gonzalez R, Orchard I (2009) Physiological activity of neuropeptide F on the hindgut of the blood-feeding hemipteran, Rhodnius prolixus. J Insect Sci 9:1–14

  84. Gould E (1999) Serotonin and hippocampal neurogenesis. Neuropsychopharmacology 21:46S–51S

  85. Hartline DK, Christie AE (2010) Immunohistochemical mapping of histamine, dopamine, and serotonin in the central nervous system of the copepod Calanus finmarchicus (Crustacea; Maxillopoda; Copepoda). Cell Tissue Res 341:49–71

  86. Harzsch S, Glötzner J (2002) An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct Dev 30:251–270

  87. Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJ (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9:5296-5310

  88. Heinzel HG, Weimann JM, Marder E (1993) The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. J Neurosci 13:1793–1803

  89. Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

  90. Hsu YW, Messinger DI, Chung JS, Webster SG, Iglesia HO de la, Christie AE (2006) Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function. J Exp Biol 209:3241–3256

  91. Hsu YW, Stemmler EA, Messinger DI, Dickinson PS, Christie AE, Iglesia HO de la (2008) Cloning and differential expression of two beta-pigment-dispersing hormone (beta-PDH) isoforms in the crab Cancer productus: evidence for authentic beta-PDH as a local neurotransmitter and beta-PDH II as a humoral factor. J Comp Neurol 508:197–211

  92. Huber R (2005) Amines and motivated behaviors: a simpler systems approach to complex behavioral phenomena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:231–239

  93. Huber R, Panksepp JB, Yue Z, Delago A, Moore P (2001) Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish. Brain Behav Evol 57:271–282

  94. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314:647–649

  95. Humphries JE, Kimber MJ, Barton YW, Hsu W, Marks NJ, Greer B, Harriott P, Maule AG, Day TA (2004) Structure and bioactivity of neuropeptide F from the human parasites Schistosoma mansoni and Schistosoma japonicum. J Biol Chem 279:39880–39885

  96. Huybrechts J, Nusbaum MP, Vanden Bosch L, Baggerman G, De Loof A, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 308:535–544

  97. Huybrechts J, Verleyen P, Schoofs L (2005) Mass spectrometric analysis of head ganglia and neuroendocrine tissue of larval Galleria mellonella (Arthropoda, Insecta). J Mass Spectrom 40:271–276

  98. Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, Robichon A, Veenstra JA, Tagu D (2010) Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:87–95

  99. Jaros PP, Keller R (1979) Immunocytochemical identification of hyperglycemic hormone-producing cells in the eyestalk of Carcinus maenas. Cell Tissue Res 204:379–385

  100. Johnson BR, Harris-Warrick RM (1990) Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J Neurosci 10:2066–2076

  101. Johnson BR, Harris-Warrick RM (1997) Amine modulation of glutamate responses from pyloric motor neurons in lobster stomatogastric ganglion. J Neurophysiol 78:3210–3221

  102. Johnson BR, Peck JH, Harris-Warrick RM (1993) Amine modulation of electrical coupling in the pyloric network of the lobster stomatogastric ganglion. J Comp Physiol [A] 172:715–732

  103. Johnson BR, Peck JH, Harris-Warrick RM (1994) Differential modulation of chemical and electrical components of mixed synapses in the lobster stomatogastric ganglion. J Comp Physiol [A] 175:233–249

  104. Johnson BR, Peck JH, Harris-Warrick RM (1995) Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J Neurophysiol 74:437–452

  105. Jorge-Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol [A] 179:741–751

  106. Jorge-Rivera JC, Sen K, Birmingham JT, Abbott LF, Marder E (1998) Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J Neurophysiol 80:2559–2570

  107. Karl T, Herzog H (2007) Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 28:326–333

  108. Knowles FGW (1953) Endocrine activity in the crustacean nervous system. Proc R Soc Lond [Biol] 141:248–267

  109. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416–427

  110. Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol [A] 186:221–238

  111. Kravitz EA, Glusman S, Harris-Warrick RM, Livingstone MS, Schwarz T, Goy MF (1980) Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. J Exp Biol 89:159–175

  112. LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

  113. Lee CY, Zou HS, Yau SM, Ju YR, Liau CS (2000) Nitric oxide synthase activity and immunoreactivity in the crayfish Procambarus clarkii. Neuroreport 11:1273–1276

  114. Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E (2003) Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 87:642–656

  115. Li JT, Lee PP, Chen OC, Cheng W, Kuo CM (2005) Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol 19:269–280

  116. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Arakane Y, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJ, Park Y (2007) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122

  117. Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics 5:510–522

  118. Lohrmann DM, Kamemoto FI (1987) The effect of dibutyryl cAMP on sodium uptake by isolated perfused gills of Callinectes sapidus. Gen Comp Endocrinol 65:300–305

  119. Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski MA, Goiney CC, Goy MF, Christie AE, Li L (2008) Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 156:395–409

  120. Ma M, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009a) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334

  121. Ma M, Chen RB, Ge Y, He H, Marshall AG, Li L (2009b) Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal Chem 81:240–247

  122. Ma M, Wang J, Chen R, Li L (2009c) Expanding the crustacean neuropeptidome using a multifaceted mass spectrometric approach. J Proteome Res 8:2426–2437

  123. Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43

  124. Mahadevan A, Lappé J, Rhyne RT, Cruz-Bermúdez ND, Marder E, Goy MF (2004) Nitric oxide inhibits the rate and strength of cardiac contractions in the lobster Homarus americanus by acting on the cardiac ganglion. J Neurosci 24:2813–2824

  125. Mancuso C, Navarra P, Preziosi P (2010) Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 113:563–575

  126. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

  127. Maule AG, Shaw C, Halton DW, Thim L, Johnston CF, Fairweather I, Buchanan KD (1991) Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda:Cyclophyllidea). Parasitology 102:309–316

  128. Maynard DM (1961a) Thoracic neurosecretory structures in Brachyura. I. Gross anatomy. Biol Bull 121:316–329

  129. Maynard DM (1961b) Thoracic neurosecretory structures in Brachyura. II. Secretory neurons. Gen Comp Endocrinol 1:237–263

  130. McCoole MD, Baer KN, Christie AE (2011) Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J Exp Biol 214:1773–1782

  131. Messinger DI, Ngo CT, Cain SD, Christie AE (2004) Phylogenetic conservation of a tachykinin-containing neuroendocrine organ in the commissural ganglia of decapod crustaceans. Program No. 274.3. 2004 Neuroscience Meeting Planner. Society for Neuroscience, San Diego (online)

  132. Messinger DI, Kutz KK, Le T, Verley DR, Hsu YW, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J Exp Biol 208:3303–3319

  133. Monigatti F, Gasteiger E, Bairoch A, Jung E (2002) The sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 18:769–770

  134. Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

  135. Morris S, Ahern MD (2003) Regulation of urine reprocessing in the maintenance of sodium and water balance in the terrestrial Christmas Island red crab Gecarcoidea natalis investigated under field conditions. J Exp Biol 206:2869–2881

  136. Morris S, Greenaway P, Adamczewska AM, Ahern MD (2000) Adaptations to a terrestrial existence in the robber crab Birgus latro L. IX. Hormonal control of post-renal urine reprocessing and salt balance in the branchial chamber. J Exp Biol 203:389–396

  137. Mulloney B, Hall WM (1991) Neurons with histamine-like immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266:197–207

  138. Nakatsuji T, Lee CY, Watson RD (2009) Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comp Biochem Physiol A Mol Integr Physiol 152:139–148

  139. Neupert S, Russell WK, Predel R, Russell DH, Strey OF, Teel PD, Nachman RJ (2009) The neuropeptidomics of Ixodes scapularis synganglion. J Proteomics 72:1040–1045

  140. Nuss AB, Forschler BT, Crim JW, Brown MR (2008) Distribution of neuropeptide F-like immunoreactivity in the Eastern Subterranean termite, Reticulitermes flavipes. J Insect Sci 8:1–18

  141. Nuss AB, Forschler BT, Crim JW, TeBrugge V, Pohl J, Brown MR (2010) Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Peptides 31:419–428

  142. Ollivaux C, Gallois D, Amiche M, Boscaméric M, Soyez D (2009) Molecular and cellular specificity of post-translational aminoacyl isomerization in the crustacean hyperglycaemic hormone family. FEBS J 276:4790–4802

  143. Ons S, Richter F, Urlaub H, Pomar RR (2009) The neuropeptidome of Rhodnius prolixus brain. Proteomics 9:788–792

  144. Panksepp JB, Yue Z, Drerup C, Huber R (2003) Amine neurochemistry and aggression in crayfish. Microsc Res Tech 60:360–368

  145. Passano LM (1951) The X-organ-sinus gland system neurosecretory system of crabs. Anat Rec 111:502

  146. Peck JH, Gaier E, Stevens E, Repicky S, Harris-Warrick RM (2006) Amine modulation of Ih in a small neural network. J Neurophysiol 96:2931–2940

  147. Pedetta S, Kaczer L, Maldonado H (2010) Individual aggressiveness in the crab Chasmagnathus: influence in fight outcome and modulation by serotonin and octopamine. Physiol Behav 101:438–445

  148. Pedrazzini T, Pralong F, Grouzmann E (2003) Neuropeptide Y: the universal soldier. Cell Mol Life Sci 60:350–377

  149. Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A (2008) Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 25:485–493

  150. Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ (2010) Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 9:2006–2015

  151. Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90

  152. Pulver SR, Thirumalai V, Richards KS, Marder E (2003) Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 462:400–414

  153. Rajpara SM, Garcia PD, Roberts R, Eliassen JC, Owens DF, Maltby D, Myers RM, Mayeri E (1992) Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 9:505–513

  154. Rao KR, Riehm JP (1993) Pigment-dispersing hormones. Ann NY Acad Sci 680:78–88

  155. Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the marbled crayfish (Marmorkrebs). Tissue Cell 40:113–126

  156. Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A Mol Integr Physiol 146:661–671

  157. Rogers M, Richmond JE, Sun P, Cooke IM (1997) GABA receptors in crab peptidergic secretory neurons and terminals, and their modulation by Ca2+. Soc Neurosci Abstr 23:375

  158. Roller L, Yamanaka N, Watanabe K, Daubnerová I, Zitnan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1147–1157

  159. Rubakhin SS, Sweedler JV (2010) A mass spectrometry primer for mass spectrometry imaging. Methods Mol Biol 656:21–49

  160. Rubakhin SS, Hatcher NG, Monroe EB, Heien ML, Sweedler JV (2007) Mass spectrometric imaging of the nervous system. Curr Pharm Des 13:3325–3334

  161. Sandeman DC, Benton JL, Beltz BS (2009) An identified serotonergic neuron reguates adult neurogenesis in the crustacean brain. Dev Neurobiol 69:530–545

  162. Savage EE, Messinger DI, Trieu Q, Doan V, Verley DR, Birmingham JT, Christie AE (2006) Structural but not neurochemical conservation of the anterior cardiac neuron 1/2-anterior cardiac plexus (ACN1/2-ACP) neuroendocrine system of Cancer crabs: implications for differential sensitivities of the foregut musculature to FLRFamide. Program No. 129.6. 2006 Neuroscience Meeting Planner. Society for Neuroscience, Atlanta, GA (online)

  163. Saver MA, Wilkens JL, Syed NI (1999) In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. J Neurophysiol 81:2964–2976

  164. Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329:129–142

  165. Scholz NL, Vente J de, Truman JW, Graubard K (2001) Neural network partitioning by NO and cGMP. J Neurosci 21:1610–1618

  166. Scholz NL, Labenia JS, Vente J de, Graubard K, Goy MF (2002) Expression of nitric oxide synthase and nitric oxide-sensitive guanylate cyclase in the crustacean cardiac ganglion. J Comp Neurol 454:158–167

  167. Sharp JH, Wilcockson DC, Webster SG (2010) Identification and expression of mRNAs encoding bursicon in the plesiomorphic central nervous system of Homarus gammarus. Gen Comp Endocrinol 169:65–74

  168. Siwicki KK, Beltz BS, Kravitz EA (1987) Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J Neurosci 7:522–532

  169. Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

  170. Skiebe P (2003) Neuropeptides in the crayfish stomatogastric nervous system. Microsc Res Tech 60:302–312

  171. Sosa MA, Baro DJ (2002) Amine effects on aggression in the giant tropical freshwater prawn Macrobrachium rosenbergii. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 143–155

  172. Stanek DM, Pohl J, Crim JW, Brown MR (2002) Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 23:1367–1378

  173. Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299

  174. Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009

  175. Stein W, Eberle CC, Hedrich UB (2005) Motor pattern selection by nitric oxide in the stomatogastric nervous system of the crab. Eur J Neurosci 21:2767–2781

  176. Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE (2007a) High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 28:2104–2115

  177. Stemmler EA, Hsu YW, Cashman CR, Messinger DI, Iglesia HO de la, Dickinson PS, Christie AE (2007b) Direct tissue MALDI-FTMS profiling of individual Cancer productus sinus glands reveals that one of three distinct combinations of crustacean hyperglycemic hormone precursor-related peptide (CPRP) isoforms are present in individual crabs. Gen Comp Endocrinol 154:184–192

  178. Stollewerk A (2010) The water flea Daphnia— a “new” model system for ecology and evolution? J Biol 9:21

  179. Sullivan JM, Beltz BS (2005) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170

  180. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352:305–310

  181. Thorsell A (2008) Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann NY Acad Sci 1148:136–140

  182. Turrigiano GG, Selverston AI (1991) Distribution of cholecystokinin-like immunoreactivity within the stomatogastric nervous systems of four species of decapod crustacea. J Comp Neurol 305:164–176

  183. Van Herp F, Van Buggenum HJ (1979) Immunocytochemical localization of hyperglycemic hormone (HGH) in the neurosecretory system of the eyestalk of the crayfish Astacus leptodactylus. Experientia 35:1527–1529

  184. Vázquez-Acevedo N, Rivera NM, Torres-González AM, Rullan-Matheu Y, Ruíz-Rodríguez EA, Sosa MA (2009) GYRKPPFNGSIFamide (Gly-SIFamide) modulates aggression in the freshwater prawn Macrobrachium rosenbergii. Biol Bull 217:313–326

  185. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63

  186. Verley DR, Doan V, Trieu Q, Messinger DI, Birmingham JT (2008) Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:879–886

  187. Walker RJ, Papaioannou S, Holden-Dye L (2010) A review of FMRFamide- and RFamide-like peptides in Metazoa. Invert Neurosci 9:111–153

  188. Weaver RJ, Audsley N (2008) Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome. Peptides 29:168–178

  189. Webster SG, Dircksen H, Chung JS (2000) Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide. Cell Tissue Res 300:193–205

  190. Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the genus Drosophila. Genome Biol 9:R131

  191. Wilkens JL, Taylor HH (2003) The control of vascular resistance in the southern rock lobster, Jasus edwardsii (Decapoda: Palinuridae). Comp Biochem Physiol A Mol Integr Physiol 135:369–376

  192. Wilson CH, Christie AE (2010) Distribution of C-type allatostatin (C-AST)-like immunoreactivity in the central nervous system of the copepod Calanus finmarchicus. Gen Comp Endocrinol 167:252–260

  193. Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–161

  194. Wu Q, Zhao Z, Shen P (2005) Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat Neurosci 8:1350–1355

  195. Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436

  196. Zhang Y, Benton JL, Beltz BS (2011) 5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural Dev 6:2

Download references

Acknowledgements

Dr. Patsy Dickinson (Bowdoin College) and Ms. Christine Smith (MDIBL) are thanked for reading and commenting on drafts of this article. The author acknowledges that Figure 1 and its legend from Vásques-Acevedo, Rivera, Torres-González, Rullan-Matheu, Ruíz-Rodríguez, and Sosa (2009. Biol. Bull. 217: 313–326), have been reprinted in this review with permission from the Marine Biological Laboratory, Woods Hole, MA. Likewise, the author acknowledges that permission to reprint figures and their associated legends from Sandeman, Benton, and Beltz (2009. Dev. Neurobiol. 69: 530–545.) was granted by John Wiley & Sons, Inc. Permission to reprint figures, tables and legends from articles previously published in General and Comparative Endocrinology was granted by Elsivier Ltd.; the author maintains copyright to all figures and legends reused from articles published in The Journal of Experimental Biology.

Author information

Correspondence to Andrew E. Christie.

Additional information

Financial support for this work was provided by NIH Grant Number P20 RR-016463 from the INBRE Program of the National Center for Research Resources (Patricia Hand, Ph.D., Principal Investigator) and through institutional funds provided by MDIBL.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christie, A.E. Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 345, 41–67 (2011). https://doi.org/10.1007/s00441-011-1183-9

Download citation

Keywords

  • Neuroendocrine organs
  • Neurotransmitters
  • Neurochemistry
  • Gut
  • Neurohormones
  • Genome mining
  • Mass spectral imaging
  • Decapod crustaceans