Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida

  • 200 Accesses

  • 14 Citations

Abstract

Unfertilized eggs commonly lack centrioles, which are usually provided by the male gamete at fertilization, and are unable to assemble functional reproducing centrosomes. However, some insect species lay eggs that develop to adulthood without a contribution from sperm. We report that the oocyte of the parthenogenetic collembolan Folsomia candida is able to self-assemble microtubule-based asters in the absence of pre-existing maternal centrosomes. The asters, which develop near the innermost pole of the meiotic apparatus, interact with the female chromatin to form the first mitotic spindle. The appearance of microtubule-based asters in the cytoplasm of the activated Folsomia oocyte might represent a conserved mechanism for centrosome formation during insect parthenogenesis. We also report that the architecture of the female meiotic apparatus and the structure of the mitotic spindles during the early embryonic divisions are unusual in comparison with that of insects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Buning J (1994) The insect ovary. Chapman and Hall, London

  2. Callaini G, Riparbelli MG, Dallai R (1994) The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. J Cell Sci 107:673–682

  3. Callaini G, Riparbelli MG, Dallai R (1999) Centrosome inheritance in insects: fertilization and parthenogenesis. Biol Cell 91:355–366

  4. Czarnetzki AB, Tebbe CC (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6:35–44

  5. Cantillana V, Urrutia M, Ubilla A, Fernàndez J (2000) The complex dynamic network of microtubule and microfilament cytasters of the leech zigote. Dev Biol 228:136–149

  6. De Saint Phalle B, Sullivan W (1998) Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J Cell Biol 141:1383–1391

  7. Delattre M, Gonczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1630

  8. Dirksen ER (1961) The presence of centrioles in artificially activated sea urchin eggs. J Cell Biol 11:244–247

  9. Giansanti MG, Bonaccorsi S, Williams B, Williams EV, Santolamazza C, Goldberg ML, Gatti M (1998) Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev 12:396–410

  10. Gottlieb Y, Zchori-Fein E, Werren JH, Karr TL (2002) Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J Invert Pathol 81:166–174

  11. Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291:1547–1550

  12. Hollembeck PJ, Cande WZ (1985) Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus. Eur J Cell Biol 37:140–148

  13. Itoh R, Hisamatsu M, Matsunaga M, Hishida F (1995) Growth and reproduction of a collembolan species, Folsomia candida (Willem), under experimental conditions. J College Arts Sci 26:23–30

  14. Kallenbach RJ (1985) Ultrastructural analysis of the initiation and development of cytasters in sea urchin eggs. J Cell Sci 73:261–278

  15. Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

  16. Keating HH, White JG (1998) Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 111:3027–3033

  17. Kuriyama R, Borisy GG (1983) Cytasters induced within unfertilized sea-urchin eggs. J Cell Sci 61:175–189

  18. Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore-microtubule interface. J Cell Sci 117:5461–5477

  19. Manandhar G, Simerly C, Schatten G (2000) Centrosome reduction during mammalian spermiogenesis. Curr Top Dev Biol 49:343–363

  20. Marescalchi O, Zauli C, Scali V (2002) Centrosome dynamics and inheritance in related sexual and parthenogenetic Bacillus (Insecta Phasmatodea). Mol Reprod Dev 63:89–95

  21. Miki-Noumura T (1977) Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin. J Cell Sci 24:203–216

  22. Nédèlec F, Surrey T, Karsenti E (2003) Self-organisation and forces in the microtubule cytoskeleton. Curr Opin Cell Biol 15:118–124

  23. Oakley BR (2000) γ-Tubulin. Curr Top Dev Biol 49:27–54

  24. Palévody C (1973) Etude cytologique de la parthémogenése chez Folsomia candida (Collembole, Isotomide). C R Acad Sci III 277:2501–2504

  25. Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW (2004) Cytology of Wolbachia-induced parthenogenesis in Leptopillina clavipes (Hymenoptera:Figitidae). Genome 47:299–303

  26. Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553

  27. Riparbelli MG, Callaini G (2003) Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev Biol 260:298–313

  28. Riparbelli MG, Stouthamer R, Dallai R, Callaini G (1998) Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. Dev Biol 195:88–99

  29. Riparbelli MG, Tagu D, Bonhomme J, Callaini G (2005) Aster self-organization at meiosis: a conserved mechanism in insect parthenogenesis? Dev Biol 278:220–230

  30. Sawada T, Schatten G (1988) Microtubules in ascidian eggs during meiosis, fertilization, and mitosis. Cell Motil Cytoskeleton 9:219–230

  31. Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2:90–95

  32. Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16:49–54

  33. Stouthamer R (1997) Wolbachia-induced parthenogenesis. In: O’Neill SL, Werren JH, Hoffmann AA (eds) Influential passengers. Oxford University Press, New York, pp 102–124

  34. Stouthamer R, Kazmer DJ (1994) Cytogenetic of microbe associated parthenogenesis, consequences for gene flow in Trichogrammawasps. Heredity 73:317–323

  35. Stephano JL, Gould MC (1995) Parthenogenesis in Urechis caupo (Echiura). I. Persistance of functional maternal asters following activation without meiosis. Dev Biol 167:104–117

  36. Tram U, Sullivan W (2000) Reciprocal inheritance of centrosomes in the parthenogenetic hymenopteran Nasonia vitripennis. Curr Biol 10:1413–1419

  37. Uetake Y, Kato KH, Washitani-Nemoto S, Remoto SS (2002) Non-equivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Dev Biol 247:149–164

  38. Vandekerckhove TT, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180:279–286

  39. Vavre F, de Jong JH, Stouthamer R (2004) Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93:592–596

  40. Wadsworth P, Khodjakov AE (2004) Pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

  41. Wilson PG, Borisy GG (1998) Maternally expressed gamma Tub37CD in Drosophila is differentially required for female meiosis and embryonic mitosis. Dev Biol 199:273–290

  42. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3:E28–E34

  43. Wu X, Palazzo RE (1999) Differential regulation of maternal vs. paternal centrosomes. Proc Natl Acad Sci USA 96:1397–1402

  44. Zhang QY, Tamura M, Uetake Y, Washitani-Nemoto S, Remoto S (2004) Regulation of the paternal inheritance of centrosomes in starfish zygotes. Dev Biol 266:190–200

Download references

Acknowledgements

We thank Ryosaku Itoh for supplying the F. candida strain from Mt. Fuji, and Vanessa Arms for technical assistance.

Author information

Correspondence to Giuliano Callaini.

Additional information

This work was made possible by grants from PAR (University of Siena) and PRIN to G.C.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riparbelli, M.G., Giordano, R. & Callaini, G. Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida . Cell Tissue Res 326, 861–872 (2006). https://doi.org/10.1007/s00441-006-0253-x

Download citation

Keywords

  • Parthenogenesis
  • Meiosis
  • Centrosome inheritance
  • Mitotic spindle organization
  • Folsomia candida (Hexapoda, Collembola)