Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The enigma of transmitter-selective receptor accumulation at developing inhibitory synapses

  • 54 Accesses

  • 9 Citations

Abstract

The control of synaptic inhibition is crucial for normal brain function. More than 20 years ago, glycine and gamma-aminobutyric acid (GABA) were shown to be the two major inhibitory neurotransmitters. They can be released independently from different terminals or co-released from the same terminal to activate postsynaptic glycine and GABAA receptors. The anchoring protein gephyrin is involved in the postsynaptic accumulation of both glycine and GABAA receptors. In lower brain regions, both receptors can be concentrated in synapses, whereas in higher brain regions, glycine receptors are mostly excluded from postsynaptic sites. The activation of glycine and/or GABAA receptors determines the strength and precise timing of inhibition. Therefore, tight regulation of postsynaptic glycine versus GABAA receptor localization is crucial for optimizing synaptic inhibition in neurons. This review focuses on recent findings and discusses questions concerning the specificity of postsynaptic inhibitory neurotransmitter receptor accumulation during inhibitory synapse formation and development.

This is a preview of subscription content, log in to check access.

Fig. 1A–C.
Fig. 2A–D.

References

  1. Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101

  2. Bedford FK, Kittler JT, Jones SC, Sihra TS, Harvey RJ, Moss SJ (1999) GABA-A receptor subunits associate with specific gephyrin isoforms (Abstract no. 681.21). Soc Neurosci Abstracts 25:1712

  3. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

  4. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

  5. Bootman MD, Lipp P, Berridge MJ (2001) The organisation and functions of local Ca(2+) signals. J Cell Sci 114:2213–2222

  6. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417:649–653

  7. Brickley SG, Cully-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol (Lond) 497:753–759

  8. Broughman JR, Shank LP, Takeguchi W, Schultz BD, Iwamoto T, Mitchell KE, Tomich JM (2002) Distinct structural elements that direct solution aggregation and membrane assembly in the channel-forming peptide M2GlyR. Biochemistry 41:7350–7358

  9. Brunig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002) GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci 22:4805–4813

  10. Cantallops I, Cline HT (2000) Synapse formation: if it looks like a duck and quacks like a duck..... Curr Biol 10:R620-R623

  11. Christie SB, Miralles CP, De Blas AL (2002) GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons. J Neurosci 22:684–697

  12. Colin I, Rostaing P, Triller A (1996) Gephyrin accumulates at specific plasmalemma loci during neuronal maturation in vitro. J Comp Neurol 374:467–479

  13. Craig AM, Boudin H (2001) Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci 4:569–578

  14. Dumoulin A, Levi S, Riveau B, Gasnier B, Triller A (2000) Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. Eur J Neurosci 12:3883–3892

  15. Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571

  16. Gasnier B (2000) The loading of neurotransmitters into synaptic vesicles. Biochimie 82:327–337

  17. Guastella J, Johnson CD, Stretton AO (1991) GABA-immunoreactive neurons in the nematode Ascaris. J Comp Neurol 307:584–597

  18. Hardingham GE, Arnold FJ, Bading H (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4:565–566

  19. Hoch W, Betz H, Becker CM (1989) Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3:339–348

  20. Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

  21. Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

  22. Kaiser S, Blank M, Berg DK (2002) Maturation of postsynaptic nicotinic structures on autonomic neurons requires innervation but not cholinergic transmission. Eur J Neurosci 16:1–10

  23. Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392:717–720

  24. Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366:745–748

  25. Klein R (2001) Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Biol 13:196–203

  26. Kneussel M, Brandstatter JH, Laube B, Stahl S, Muller U, Betz H (1999) Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci 19:9289–9297

  27. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

  28. Legendre P, Müller E, Badiu CI, Meier J, Vannier C, Triller A (2002) Desensitization of homomeric alpha1 glycine receptor increases with receptor density (abstract). Mol Pharmacol 62:(in press)

  29. Levi S, Vannier C, Triller A (1998) Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J Cell Sci 111:335–345

  30. Levi S, Chesnoy-Marchais D, Sieghart W, Triller A (1999) Synaptic control of glycine and GABA(A) receptors and gephyrin expression in cultured motoneurons. J Neurosci 19:7434–7449

  31. Levi S, Grady RM, Henry MD, Campbell KP, Sanes JR, Craig AM (2002) Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci 22:4274–4285

  32. Li J, Smolyar A, Sunder-Plassmann R, Reinherz EL (1996) Ligand-induced conformational change within the CD2 ectodomain accompanies receptor clustering: implication for molecular lattice formation. J Mol Biol 263:209–226

  33. Lyons HR, Land MB, Gibbs TT, Farb DH (2001) Distinct signal transduction pathways for GABA-induced GABA(A) receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels. J Neurochem 78:1114–1126

  34. Mangin JM, Guyon A, Eugene D, Paupardin-Tritsch D, Legendre P (2002) Functional glycine receptor maturation in the absence of glycinergic input in dopaminergic neurones of the rat substantia nigra. J Physiol 542:685–697

  35. Marty S, Wehrle R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C (2002) Postnatal maturation of Na+, K+, 2Cl cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 15:233–245

  36. Meier J, Meunier-Durmort C, Forest C, Triller A, Vannier C (2000a) Formation of glycine receptor clusters and their accumulation at synapses. J Cell Sci 113:2783–2795

  37. Meier J, De Chaldee M, Triller A, Vannier C (2000b) Functional heterogeneity of gephyrins. Mol Cell Neurosci 16:566–577

  38. Meier J, Vannier C, Serge A, Triller A, Choquet D (2001) Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 4:253–260

  39. Meier J, Jüttner R, Kirischuk S, Grantyn R (2002) Synaptic anchoring of glycine receptors in developing collicular neurons under control of metabotropic glutamate receptor activity. Mol Cell Neurosci 21:324–340

  40. Meier J, Akyeli J, Kirischuk S, Grantyn R (2003) GABAAR activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol Cell Neurosci (in press)

  41. Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15:563–572

  42. Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

  43. O'Brien JA, Berger AJ (1999) Cotransmission of GABA and glycine to brain stem motoneurons. J Neurophysiol 82:1638–1641

  44. Poyatos I, Ponce J, Aragon C, Gimenez C, Zafra F (1997) The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Brain Res Mol Brain Res 49:63–70

  45. Radian R, Ottersen OP, Storm-Mathisen J, Castel M, Kanner BI (1990) Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 10:1319–1330

  46. Rao A, Cha EM, Craig AM (2000a) Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J Neurosci 20:8344–8353

  47. Rao A, Harms KJ, Craig AM (2000b) Neuroligation: building synapses around the neurexin-neuroligin link. Nat Neurosci 3:747–749

  48. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

  49. Rosenberg M, Meier J, Triller A, Vannier C (2001) Dynamics of glycine receptor insertion in the neuronal plasma membrane. J Neurosci 21:5036–5044

  50. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

  51. Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D (2002) GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol (Lond) 541:123–137

  52. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

  53. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

  54. Scotti AL, Reuter H (2001) Synaptic and extrasynaptic gamma-aminobutyric acid type A receptor clusters in rat hippocampal cultures during development. Proc Natl Acad Sci USA 98:3489–3494

  55. Seitanidou T, Triller A, Korn H (1988) Distribution of glycine receptors on the membrane of a central neuron: an immunoelectron microscopy study. J Neurosci 8:4319–4333

  56. Shepherd GM, Erulker SD (1997) Century of the synapse: from Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci 20:385–392

  57. Studler B, Fritschy J, Brunig I (2002) GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro. Neuroscience 114:123–133

  58. Titmus MJ, Korn H, Faber DS (1996) Diffusion, not uptake, limits glycine concentration in the synaptic cleft. J Neurophysiol 75:1738–1752

  59. Triller A, Cluzeaud F, Pfeiffer F, Betz H, Korn H (1985) Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J Cell Biol 101:683–688

  60. Ulfhake B, Kellerth JO (1981) A quantitative light microscopic study of the dendrites of cat spinal alpha-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 202:571–583

  61. Umeda T, Okabe S (2001) Visualizing synapse formation and remodeling: recent advances in real-time imaging of CNS synapses. Neurosci Res 40:291–300

  62. Unwin N, Miyazawa A, Li J, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. J Mol Biol 319:1165–1176

Download references

Acknowledgements

I am grateful to Dr. Rosemarie Grantyn for helpful suggestions with regard to this manuscript.

Author information

Correspondence to Jochen Meier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meier, J. The enigma of transmitter-selective receptor accumulation at developing inhibitory synapses. Cell Tissue Res 311, 271–276 (2003). https://doi.org/10.1007/s00441-002-0694-9

Download citation

Keywords

  • GABAA receptor
  • Glycine receptor
  • Synapse
  • Gephyrin
  • Calcium
  • Development