Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cut-off for lamplighter chains on tori: dimension interpolation and Phase transition

  • 134 Accesses

Abstract

Given a finite, connected graph \(\mathsf {G}\), the lamplighter chain on \(\mathsf {G}\) is the lazy random walk \(X^\diamond \) on the associated lamplighter graph \(\mathsf {G}^\diamond =\mathbb {Z}_2 \wr \mathsf {G}\). The mixing time of the lamplighter chain on the torus \(\mathbb {Z}_n^d\) is known to have a cutoff at a time asymptotic to the cover time of \(\mathbb {Z}_n^d\) if \(d=2\), and to half the cover time if \(d \ge 3\). We show that the mixing time of the lamplighter chain on \(\mathsf {G}_n(a)=\mathbb {Z}_n^2 \times \mathbb {Z}_{a \log n}\) has a cutoff at \(\psi (a)\) times the cover time of \(\mathsf {G}_n(a)\) as \(n \rightarrow \infty \), where \(\psi \) is an explicit weakly decreasing map from \((0,\infty )\) onto [1 / 2, 1). In particular, as \(a > 0\) varies, the threshold continuously interpolates between the known thresholds for \(\mathbb {Z}_n^2\) and \(\mathbb {Z}_n^3\). Perhaps surprisingly, we find a phase transition (non-smoothness of \(\psi \)) at the point \(a_*=\pi r_3 (1+\sqrt{2})\), where high dimensional behavior (\(\psi (a)=1/2\) for all \(a \ge a_*\)) commences. Here \(r_3\) is the effective resistance from 0 to \(\infty \) in \(\mathbb {Z}^3\).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Aldous, D.J.: Threshold limits for cover times. J. Theor. Probab. 4(1), 197–211 (1991)

  2. 2.

    Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4), 1670–1692 (2001)

  3. 3.

    Belius, D.: Gumbel fluctuations for cover times in the discrete torus. Probab. Theory Relat. Fields 157(3–4), 635–689 (2013)

  4. 4.

    Brummelhuis, M., Hilhorst, H.: Covering of a finite lattice by a random walk. Phys. A 176(3), 387–408 (1991)

  5. 5.

    Ding, J.: On cover times for 2D lattices. Electron. J. Probab. 17(45), 18 (2012)

  6. 6.

    Ding, J.: Asymptotics of cover times via Gaussian free fields: bounded-degree graphs and general trees. Ann. Probab. 42(2), 464–496 (2014)

  7. 7.

    Dembo, A., Kumagai, T., Nakamura, C.: Cutoff for lamplighter chains on fractals. Electron. J. Probab. 23(73), 1–21 (2018)

  8. 8.

    Dembo, A., Peres, Y., Rosen, J.: How large a disc is covered by a random walk in \(n\) steps? Ann. Probab. 35(2), 577–601 (2007)

  9. 9.

    Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. (2) 160(2), 433–464 (2004)

  10. 10.

    Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Late points for random walks in two dimensions. Ann. Probab. 34(1), 219–263 (2006)

  11. 11.

    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). (corrected reprint of the second edition, 1998)

  12. 12.

    Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, vol. 480, pp. 1–96. Springer, Berlin (1975)

  13. 13.

    Häggström, O., Jonasson, J.: Rates of convergence for lamplighter processes. Stoch. Process. Appl. 67(2), 227–249 (1997)

  14. 14.

    Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)

  15. 15.

    Komjáthy, J., Miller, J., Peres, Y.: Uniform mixing time for random walk on lamplighter graphs. Ann. Inst. Henri Poincaré Probab. Stat. 50(4), 1140–1160 (2014)

  16. 16.

    Komjáthy, J., Peres, Y.: Mixing and relaxation time for random walk on wreath product graphs. Electron. J. Probab. 18(71), 23 (2013)

  17. 17.

    Lawler, G.F.: Intersections of Random Walks. Probability and Its Applications. Birkhäuser Boston Inc., Boston (1991)

  18. 18.

    Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

  19. 19.

    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009). (with a chapter by J. Propp and D. B. Wilson)

  20. 20.

    Lyons, R., Peres, Y.: Probability on trees and networks. In: Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016). ISBN: 978-1-107-16015-6 MR3616205

  21. 21.

    Miller, J., Peres, Y.: Uniformity of the uncovered set of random walk and cutoff for lamplighter chains. Ann. Probab. 40(2), 535–577 (2012)

  22. 22.

    Miller, J., Sousi, P.: Uniformity of the late points of random walk on \({\mathbb{Z}}_n^d\) for \(d\ge 3\). Probab. Theory Relat. Fields 167(3–4), 1001–1056 (2017)

  23. 23.

    Peres, Y., Revelle, D.: Mixing times for random walks on finite lamplighter groups. Electron. J. Probab. 9(26), 825–845 (2004)

Download references

Author information

Correspondence to Jian Ding.

Additional information

Amir Dembo: Research partially supported by NSF Grants DMS-1106627 and DMS-1613091. Jian Ding: Research partially supported by NSF Grant DMS-1313596, DMS-1757479 and an Alfred Sloan fellowship. Jason Miller: Research partially supported by NSF Grant DMS-1204894. Part of the work was done when A.D. and J.D. participated in the MSRI program on Random Spatial Processes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dembo, A., Ding, J., Miller, J. et al. Cut-off for lamplighter chains on tori: dimension interpolation and Phase transition. Probab. Theory Relat. Fields 173, 605–650 (2019). https://doi.org/10.1007/s00440-018-0883-4

Download citation

Keywords

  • Wreath product
  • Lamplighter walk
  • Mixing time
  • Cutoff
  • Uncovered set

Mathematics Subject Classification

  • 60J10
  • 60D05
  • 37A25